Matches in SemOpenAlex for { <https://semopenalex.org/work/W3217767020> ?p ?o ?g. }
- W3217767020 endingPage "5450" @default.
- W3217767020 startingPage "5450" @default.
- W3217767020 abstract "The new advances in multiple types of devices and machine learning models provide opportunities for practical automatic computer-aided diagnosis (CAD) systems for ECG classification methods to be practicable in an actual clinical environment. This imposes the requirements for the ECG arrhythmia classification methods that are inter-patient. We aim in this paper to design and investigate an automatic classification system using a new comprehensive ECG database inter-patient paradigm separation to improve the minority arrhythmical classes detection without performing any features extraction. We investigated four supervised machine learning models: support vector machine (SVM), k-nearest neighbors (KNN), Random Forest (RF), and the ensemble of these three methods. We test the performance of these techniques in classifying: Normal beat (NOR), Left Bundle Branch Block Beat (LBBB), Right Bundle Branch Block Beat (RBBB), Premature Atrial Contraction (PAC), and Premature Ventricular Contraction (PVC), using inter-patient real ECG records from MIT-DB after segmentation and normalization of the data, and measuring four metrics: accuracy, precision, recall, and f1-score. The experimental results emphasized that with applying no complicated data pre-processing or feature engineering methods, the SVM classifier outperforms the other methods using our proposed inter-patient paradigm, in terms of all metrics used in experiments, achieving an accuracy of 0.83 and in terms of computational cost, which remains a very important factor in implementing classification models for ECG arrhythmia. This method is more realistic in a clinical environment, where varieties of ECG signals are collected from different patients." @default.
- W3217767020 created "2021-12-06" @default.
- W3217767020 creator A5019316255 @default.
- W3217767020 creator A5033726943 @default.
- W3217767020 creator A5089893325 @default.
- W3217767020 date "2021-11-22" @default.
- W3217767020 modified "2023-10-04" @default.
- W3217767020 title "An Automated System for ECG Arrhythmia Detection Using Machine Learning Techniques" @default.
- W3217767020 cites W1978142137 @default.
- W3217767020 cites W1983921492 @default.
- W3217767020 cites W1994670735 @default.
- W3217767020 cites W1996894363 @default.
- W3217767020 cites W2003465012 @default.
- W3217767020 cites W2017661634 @default.
- W3217767020 cites W2037641135 @default.
- W3217767020 cites W2047266047 @default.
- W3217767020 cites W2063921320 @default.
- W3217767020 cites W2071901586 @default.
- W3217767020 cites W2082589768 @default.
- W3217767020 cites W2085137652 @default.
- W3217767020 cites W2088276287 @default.
- W3217767020 cites W2097936772 @default.
- W3217767020 cites W2103308415 @default.
- W3217767020 cites W2116512366 @default.
- W3217767020 cites W2132300419 @default.
- W3217767020 cites W2137409440 @default.
- W3217767020 cites W2139727462 @default.
- W3217767020 cites W2158112071 @default.
- W3217767020 cites W2160653388 @default.
- W3217767020 cites W2165772152 @default.
- W3217767020 cites W2167673381 @default.
- W3217767020 cites W2277019862 @default.
- W3217767020 cites W2336769383 @default.
- W3217767020 cites W2507148354 @default.
- W3217767020 cites W2568858846 @default.
- W3217767020 cites W2585667490 @default.
- W3217767020 cites W2894715962 @default.
- W3217767020 cites W2900309647 @default.
- W3217767020 cites W2901455448 @default.
- W3217767020 cites W2911964244 @default.
- W3217767020 cites W2917653762 @default.
- W3217767020 cites W2961085424 @default.
- W3217767020 cites W2962511854 @default.
- W3217767020 cites W2969574967 @default.
- W3217767020 cites W2983470631 @default.
- W3217767020 cites W2990628560 @default.
- W3217767020 cites W3009181500 @default.
- W3217767020 cites W3010322752 @default.
- W3217767020 cites W3016895808 @default.
- W3217767020 cites W3018885381 @default.
- W3217767020 cites W3022962499 @default.
- W3217767020 cites W3023338722 @default.
- W3217767020 cites W3039916607 @default.
- W3217767020 cites W3048700923 @default.
- W3217767020 cites W3095753783 @default.
- W3217767020 cites W3123326053 @default.
- W3217767020 cites W4213024809 @default.
- W3217767020 cites W812309224 @default.
- W3217767020 doi "https://doi.org/10.3390/jcm10225450" @default.
- W3217767020 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8618527" @default.
- W3217767020 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34830732" @default.
- W3217767020 hasPublicationYear "2021" @default.
- W3217767020 type Work @default.
- W3217767020 sameAs 3217767020 @default.
- W3217767020 citedByCount "23" @default.
- W3217767020 countsByYear W32177670202022 @default.
- W3217767020 countsByYear W32177670202023 @default.
- W3217767020 crossrefType "journal-article" @default.
- W3217767020 hasAuthorship W3217767020A5019316255 @default.
- W3217767020 hasAuthorship W3217767020A5033726943 @default.
- W3217767020 hasAuthorship W3217767020A5089893325 @default.
- W3217767020 hasBestOaLocation W32177670201 @default.
- W3217767020 hasConcept C108583219 @default.
- W3217767020 hasConcept C119857082 @default.
- W3217767020 hasConcept C12267149 @default.
- W3217767020 hasConcept C127413603 @default.
- W3217767020 hasConcept C148524875 @default.
- W3217767020 hasConcept C153180895 @default.
- W3217767020 hasConcept C154945302 @default.
- W3217767020 hasConcept C164705383 @default.
- W3217767020 hasConcept C169258074 @default.
- W3217767020 hasConcept C194789388 @default.
- W3217767020 hasConcept C199639397 @default.
- W3217767020 hasConcept C2777473070 @default.
- W3217767020 hasConcept C2778198053 @default.
- W3217767020 hasConcept C2778827112 @default.
- W3217767020 hasConcept C2780040984 @default.
- W3217767020 hasConcept C2780350126 @default.
- W3217767020 hasConcept C41008148 @default.
- W3217767020 hasConcept C52622490 @default.
- W3217767020 hasConcept C71924100 @default.
- W3217767020 hasConcept C89600930 @default.
- W3217767020 hasConcept C95623464 @default.
- W3217767020 hasConceptScore W3217767020C108583219 @default.
- W3217767020 hasConceptScore W3217767020C119857082 @default.
- W3217767020 hasConceptScore W3217767020C12267149 @default.
- W3217767020 hasConceptScore W3217767020C127413603 @default.
- W3217767020 hasConceptScore W3217767020C148524875 @default.