Matches in SemOpenAlex for { <https://semopenalex.org/work/W3217768295> ?p ?o ?g. }
- W3217768295 abstract "Magnetic materials are crucial components of many technologies that could drive the ecological transition, including electric motors, wind turbine generators and magnetic refrigeration systems. Discovering materials with large magnetic moments is therefore an increasing priority. Here, using state-of-the-art machine learning methods, we scan the Inorganic Crystal Structure Database (ICSD) of hundreds of thousands of existing materials to find those that are ferromagnetic and have large magnetic moments. Crystal graph convolutional neural networks (CGCNN), materials graph network (MEGNet) and random forests are trained on the Materials Project database that contains the results of high-throughput DFT predictions. For random forests, we use a stochastic method to select nearly one hundred relevant descriptors based on chemical composition and crystal structure. This gives results that are comparable to those of neural networks. The comparison between these different machine learning approaches gives an estimate of the errors for our predictions on the ICSD database. Validating our final predictions by comparisons with available experimental data, we found 15 materials that are likely to have large magnetic moments and have not been yet studied experimentally." @default.
- W3217768295 created "2021-12-06" @default.
- W3217768295 creator A5022294850 @default.
- W3217768295 creator A5026432359 @default.
- W3217768295 creator A5031207999 @default.
- W3217768295 creator A5047325183 @default.
- W3217768295 creator A5066112693 @default.
- W3217768295 creator A5087855135 @default.
- W3217768295 date "2023-04-14" @default.
- W3217768295 modified "2023-10-17" @default.
- W3217768295 title "Prediction of large magnetic moment materials with graph neural networks and random forests" @default.
- W3217768295 cites W1502125007 @default.
- W3217768295 cites W1656564621 @default.
- W3217768295 cites W1865840139 @default.
- W3217768295 cites W1965206441 @default.
- W3217768295 cites W1966173226 @default.
- W3217768295 cites W1971272802 @default.
- W3217768295 cites W1978021691 @default.
- W3217768295 cites W1978131551 @default.
- W3217768295 cites W1978853781 @default.
- W3217768295 cites W1983149867 @default.
- W3217768295 cites W1984426100 @default.
- W3217768295 cites W1992985800 @default.
- W3217768295 cites W1993761446 @default.
- W3217768295 cites W1993875588 @default.
- W3217768295 cites W1994595537 @default.
- W3217768295 cites W1994823977 @default.
- W3217768295 cites W1997823552 @default.
- W3217768295 cites W2003116346 @default.
- W3217768295 cites W2008483960 @default.
- W3217768295 cites W2010428203 @default.
- W3217768295 cites W2010469855 @default.
- W3217768295 cites W2011240638 @default.
- W3217768295 cites W2016822770 @default.
- W3217768295 cites W2023834016 @default.
- W3217768295 cites W2031954493 @default.
- W3217768295 cites W2033671977 @default.
- W3217768295 cites W2038678608 @default.
- W3217768295 cites W2040077003 @default.
- W3217768295 cites W2049717356 @default.
- W3217768295 cites W2057809064 @default.
- W3217768295 cites W2058121313 @default.
- W3217768295 cites W2073439569 @default.
- W3217768295 cites W2077797598 @default.
- W3217768295 cites W2083222334 @default.
- W3217768295 cites W2086827196 @default.
- W3217768295 cites W2105882406 @default.
- W3217768295 cites W2134329894 @default.
- W3217768295 cites W2143837903 @default.
- W3217768295 cites W2152152303 @default.
- W3217768295 cites W2161308424 @default.
- W3217768295 cites W2170795451 @default.
- W3217768295 cites W2278970271 @default.
- W3217768295 cites W2294579140 @default.
- W3217768295 cites W2296099460 @default.
- W3217768295 cites W2328594092 @default.
- W3217768295 cites W2333410177 @default.
- W3217768295 cites W2464725281 @default.
- W3217768295 cites W2526236086 @default.
- W3217768295 cites W2531293555 @default.
- W3217768295 cites W2624304536 @default.
- W3217768295 cites W2731187935 @default.
- W3217768295 cites W2734961047 @default.
- W3217768295 cites W2760913311 @default.
- W3217768295 cites W2765541450 @default.
- W3217768295 cites W2766856748 @default.
- W3217768295 cites W2770967427 @default.
- W3217768295 cites W2782579367 @default.
- W3217768295 cites W2791709340 @default.
- W3217768295 cites W2794243221 @default.
- W3217768295 cites W2796175161 @default.
- W3217768295 cites W2800065243 @default.
- W3217768295 cites W2884475833 @default.
- W3217768295 cites W2888167894 @default.
- W3217768295 cites W2890824061 @default.
- W3217768295 cites W2891634967 @default.
- W3217768295 cites W2909445826 @default.
- W3217768295 cites W2911964244 @default.
- W3217768295 cites W2949074671 @default.
- W3217768295 cites W2949095042 @default.
- W3217768295 cites W2951747766 @default.
- W3217768295 cites W2964679901 @default.
- W3217768295 cites W3008287297 @default.
- W3217768295 cites W3033936018 @default.
- W3217768295 cites W3047259959 @default.
- W3217768295 cites W3048884198 @default.
- W3217768295 cites W3088550884 @default.
- W3217768295 cites W3088994532 @default.
- W3217768295 cites W3098905070 @default.
- W3217768295 cites W3103566548 @default.
- W3217768295 cites W3105722720 @default.
- W3217768295 cites W3181644631 @default.
- W3217768295 cites W4210338790 @default.
- W3217768295 cites W793048076 @default.
- W3217768295 cites W2080342172 @default.
- W3217768295 doi "https://doi.org/10.1103/physrevmaterials.7.044407" @default.
- W3217768295 hasPublicationYear "2023" @default.
- W3217768295 type Work @default.
- W3217768295 sameAs 3217768295 @default.
- W3217768295 citedByCount "0" @default.