Matches in SemOpenAlex for { <https://semopenalex.org/work/W3217777466> ?p ?o ?g. }
- W3217777466 endingPage "115030" @default.
- W3217777466 startingPage "115030" @default.
- W3217777466 abstract "• Twin Delayed Deep Deterministic Policy Gradient (TD3) based energy management strategy is proposed. • An online evaluation model for fuel cell voltage degradation considering four operation modes is introduced to predict fuel cell aging. • A newly designed reward function involving battery charge-sustaining is developed to stabilize the training process. • A stochastic training environment considering passenger flows for railway vehicles based on the measured driving data is used to simulate real driving conditions. In the rail transportation industry, growing energy and environmental awareness requires the use of alternatives to combustion engines. These include hybrid electrically driven railway vehicles powered by fuel cells and batteries. The cost of hydrogen consumption and the lifetime of fuel cells are currently the main challenges that need to be addressed before widespread deployment of fuel cell railway vehicles can be realized. With this in mind, this work focuses on the energy management system with emphasis on optimizing the energy distribution to reduce the overall operational cost. The presented energy management strategy (EMS) aims at minimizing hydrogen consumption and fuel cell aging costs while achieving a favorable balance between battery charging and discharging. In order to take fuel cell aging into account in energy management and mitigate fuel cell aging trough power distribution, an online fuel cell aging estimation model based on four operation modes is introduced and applied. Moreover, the advanced deep reinforcement learning method Twin Delayed Deep Deterministic Policy Gradient (TD3) is used to obtain a promising EMS. To improve the adaptability of the strategy, a stochastic training environment, which is based on real measured speed profiles considering passenger numbers is used for training. Assuming different environmental and passenger transport volumes, the results confirm that the proposed TD3-EMS achieves battery charge-sustaining at low hydrogen consumption while slowing down fuel cell degradation." @default.
- W3217777466 created "2021-12-06" @default.
- W3217777466 creator A5029422416 @default.
- W3217777466 creator A5041702952 @default.
- W3217777466 creator A5042106002 @default.
- W3217777466 creator A5043162288 @default.
- W3217777466 creator A5067164595 @default.
- W3217777466 creator A5072492586 @default.
- W3217777466 creator A5080586323 @default.
- W3217777466 date "2022-01-01" @default.
- W3217777466 modified "2023-10-17" @default.
- W3217777466 title "Deep reinforcement learning based energy management strategy of fuel cell hybrid railway vehicles considering fuel cell aging" @default.
- W3217777466 cites W1999777417 @default.
- W3217777466 cites W2065595923 @default.
- W3217777466 cites W2086157601 @default.
- W3217777466 cites W2091447093 @default.
- W3217777466 cites W2163973332 @default.
- W3217777466 cites W2294363488 @default.
- W3217777466 cites W2480648100 @default.
- W3217777466 cites W2519083751 @default.
- W3217777466 cites W2575688201 @default.
- W3217777466 cites W2784092749 @default.
- W3217777466 cites W2785605326 @default.
- W3217777466 cites W2793435266 @default.
- W3217777466 cites W2796421520 @default.
- W3217777466 cites W2917448994 @default.
- W3217777466 cites W2918210394 @default.
- W3217777466 cites W2920747241 @default.
- W3217777466 cites W2936616423 @default.
- W3217777466 cites W2945978148 @default.
- W3217777466 cites W2947693385 @default.
- W3217777466 cites W2968916867 @default.
- W3217777466 cites W2969036492 @default.
- W3217777466 cites W2972826231 @default.
- W3217777466 cites W2989891288 @default.
- W3217777466 cites W3009193590 @default.
- W3217777466 cites W3021616516 @default.
- W3217777466 cites W3047019321 @default.
- W3217777466 cites W3083933195 @default.
- W3217777466 cites W3088335723 @default.
- W3217777466 cites W3104368939 @default.
- W3217777466 cites W3107326619 @default.
- W3217777466 cites W4244173037 @default.
- W3217777466 doi "https://doi.org/10.1016/j.enconman.2021.115030" @default.
- W3217777466 hasPublicationYear "2022" @default.
- W3217777466 type Work @default.
- W3217777466 sameAs 3217777466 @default.
- W3217777466 citedByCount "43" @default.
- W3217777466 countsByYear W32177774662022 @default.
- W3217777466 countsByYear W32177774662023 @default.
- W3217777466 crossrefType "journal-article" @default.
- W3217777466 hasAuthorship W3217777466A5029422416 @default.
- W3217777466 hasAuthorship W3217777466A5041702952 @default.
- W3217777466 hasAuthorship W3217777466A5042106002 @default.
- W3217777466 hasAuthorship W3217777466A5043162288 @default.
- W3217777466 hasAuthorship W3217777466A5067164595 @default.
- W3217777466 hasAuthorship W3217777466A5072492586 @default.
- W3217777466 hasAuthorship W3217777466A5080586323 @default.
- W3217777466 hasConcept C105795698 @default.
- W3217777466 hasConcept C127413603 @default.
- W3217777466 hasConcept C154945302 @default.
- W3217777466 hasConcept C171146098 @default.
- W3217777466 hasConcept C186370098 @default.
- W3217777466 hasConcept C2987658370 @default.
- W3217777466 hasConcept C33923547 @default.
- W3217777466 hasConcept C41008148 @default.
- W3217777466 hasConcept C42360764 @default.
- W3217777466 hasConcept C66938386 @default.
- W3217777466 hasConcept C67203356 @default.
- W3217777466 hasConcept C7817414 @default.
- W3217777466 hasConcept C97541855 @default.
- W3217777466 hasConceptScore W3217777466C105795698 @default.
- W3217777466 hasConceptScore W3217777466C127413603 @default.
- W3217777466 hasConceptScore W3217777466C154945302 @default.
- W3217777466 hasConceptScore W3217777466C171146098 @default.
- W3217777466 hasConceptScore W3217777466C186370098 @default.
- W3217777466 hasConceptScore W3217777466C2987658370 @default.
- W3217777466 hasConceptScore W3217777466C33923547 @default.
- W3217777466 hasConceptScore W3217777466C41008148 @default.
- W3217777466 hasConceptScore W3217777466C42360764 @default.
- W3217777466 hasConceptScore W3217777466C66938386 @default.
- W3217777466 hasConceptScore W3217777466C67203356 @default.
- W3217777466 hasConceptScore W3217777466C7817414 @default.
- W3217777466 hasConceptScore W3217777466C97541855 @default.
- W3217777466 hasFunder F4320310476 @default.
- W3217777466 hasFunder F4320320879 @default.
- W3217777466 hasFunder F4320322923 @default.
- W3217777466 hasLocation W32177774661 @default.
- W3217777466 hasOpenAccess W3217777466 @default.
- W3217777466 hasPrimaryLocation W32177774661 @default.
- W3217777466 hasRelatedWork W1502619704 @default.
- W3217777466 hasRelatedWork W2034747394 @default.
- W3217777466 hasRelatedWork W2394436251 @default.
- W3217777466 hasRelatedWork W3009102432 @default.
- W3217777466 hasRelatedWork W3021310574 @default.
- W3217777466 hasRelatedWork W3034591868 @default.
- W3217777466 hasRelatedWork W3160732423 @default.
- W3217777466 hasRelatedWork W4200470509 @default.