Matches in SemOpenAlex for { <https://semopenalex.org/work/W3217783452> ?p ?o ?g. }
- W3217783452 endingPage "1621" @default.
- W3217783452 startingPage "1621" @default.
- W3217783452 abstract "In the era of the Internet of Things and big data, we are faced with the management of a flood of information. The complexity and amount of data presented to the decision-maker are enormous, and existing methods often fail to derive nonredundant information quickly. Thus, the selection of the most satisfactory set of solutions is often a struggle. This article investigates the possibilities of using the entropy measure as an indicator of data difficulty. To do so, we focus on real-world data covering various fields related to markets (the real estate market and financial markets), sports data, fake news data, and more. The problem is twofold: First, since we deal with unprocessed, inconsistent data, it is necessary to perform additional preprocessing. Therefore, the second step of our research is using the entropy-based measure to capture the nonredundant, noncorrelated core information from the data. Research is conducted using well-known algorithms from the classification domain to investigate the quality of solutions derived based on initial preprocessing and the information indicated by the entropy measure. Eventually, the best 25% (in the sense of entropy measure) attributes are selected to perform the whole classification procedure once again, and the results are compared." @default.
- W3217783452 created "2021-12-06" @default.
- W3217783452 creator A5004266128 @default.
- W3217783452 creator A5019405523 @default.
- W3217783452 creator A5039695158 @default.
- W3217783452 creator A5058492651 @default.
- W3217783452 creator A5074829842 @default.
- W3217783452 creator A5082263006 @default.
- W3217783452 date "2021-12-01" @default.
- W3217783452 modified "2023-10-17" @default.
- W3217783452 title "Real-World Data Difficulty Estimation with the Use of Entropy" @default.
- W3217783452 cites W1862394037 @default.
- W3217783452 cites W1983874169 @default.
- W3217783452 cites W1987616321 @default.
- W3217783452 cites W1995875735 @default.
- W3217783452 cites W2047844716 @default.
- W3217783452 cites W2060540122 @default.
- W3217783452 cites W2077204677 @default.
- W3217783452 cites W2095738857 @default.
- W3217783452 cites W2110810023 @default.
- W3217783452 cites W2121770664 @default.
- W3217783452 cites W2133849899 @default.
- W3217783452 cites W2140664477 @default.
- W3217783452 cites W2170428988 @default.
- W3217783452 cites W2512635453 @default.
- W3217783452 cites W2582561810 @default.
- W3217783452 cites W2609578674 @default.
- W3217783452 cites W2778443828 @default.
- W3217783452 cites W2783295421 @default.
- W3217783452 cites W2791544114 @default.
- W3217783452 cites W2795003709 @default.
- W3217783452 cites W2797094143 @default.
- W3217783452 cites W2898128120 @default.
- W3217783452 cites W2910027323 @default.
- W3217783452 cites W2919387282 @default.
- W3217783452 cites W2932758451 @default.
- W3217783452 cites W3000409346 @default.
- W3217783452 cites W3004565805 @default.
- W3217783452 cites W3010891413 @default.
- W3217783452 cites W3022296846 @default.
- W3217783452 cites W3030025956 @default.
- W3217783452 cites W3096652072 @default.
- W3217783452 cites W3111088329 @default.
- W3217783452 cites W3112444037 @default.
- W3217783452 cites W3120508781 @default.
- W3217783452 cites W3127779486 @default.
- W3217783452 cites W3132451580 @default.
- W3217783452 cites W3132473200 @default.
- W3217783452 cites W3135676492 @default.
- W3217783452 cites W3144658597 @default.
- W3217783452 cites W3156886174 @default.
- W3217783452 cites W3157605589 @default.
- W3217783452 cites W3160222939 @default.
- W3217783452 cites W3170461021 @default.
- W3217783452 cites W3174010949 @default.
- W3217783452 cites W3174313847 @default.
- W3217783452 cites W3180787265 @default.
- W3217783452 cites W3181204626 @default.
- W3217783452 cites W3198301638 @default.
- W3217783452 cites W3199298121 @default.
- W3217783452 cites W3202866510 @default.
- W3217783452 cites W3203944406 @default.
- W3217783452 cites W3210981004 @default.
- W3217783452 cites W4236137412 @default.
- W3217783452 cites W4292157289 @default.
- W3217783452 doi "https://doi.org/10.3390/e23121621" @default.
- W3217783452 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34945927" @default.
- W3217783452 hasPublicationYear "2021" @default.
- W3217783452 type Work @default.
- W3217783452 sameAs 3217783452 @default.
- W3217783452 citedByCount "7" @default.
- W3217783452 countsByYear W32177834522022 @default.
- W3217783452 countsByYear W32177834522023 @default.
- W3217783452 crossrefType "journal-article" @default.
- W3217783452 hasAuthorship W3217783452A5004266128 @default.
- W3217783452 hasAuthorship W3217783452A5019405523 @default.
- W3217783452 hasAuthorship W3217783452A5039695158 @default.
- W3217783452 hasAuthorship W3217783452A5058492651 @default.
- W3217783452 hasAuthorship W3217783452A5074829842 @default.
- W3217783452 hasAuthorship W3217783452A5082263006 @default.
- W3217783452 hasBestOaLocation W32177834521 @default.
- W3217783452 hasConcept C10138342 @default.
- W3217783452 hasConcept C10551718 @default.
- W3217783452 hasConcept C106301342 @default.
- W3217783452 hasConcept C121332964 @default.
- W3217783452 hasConcept C124101348 @default.
- W3217783452 hasConcept C154945302 @default.
- W3217783452 hasConcept C162324750 @default.
- W3217783452 hasConcept C2522767166 @default.
- W3217783452 hasConcept C2780009758 @default.
- W3217783452 hasConcept C34736171 @default.
- W3217783452 hasConcept C41008148 @default.
- W3217783452 hasConcept C62520636 @default.
- W3217783452 hasConcept C75684735 @default.
- W3217783452 hasConcept C82279013 @default.
- W3217783452 hasConceptScore W3217783452C10138342 @default.
- W3217783452 hasConceptScore W3217783452C10551718 @default.
- W3217783452 hasConceptScore W3217783452C106301342 @default.