Matches in SemOpenAlex for { <https://semopenalex.org/work/W3217784756> ?p ?o ?g. }
- W3217784756 abstract "Abstract Salp swarm algorithm (SSA) is one of the efficient recent meta‐heuristic optimization algorithms, where it has been successfully utilized in a wide range of optimization problems in different fields. In the research process, it is found that it is very difficult to maintain the balance between the exploration and exploitation capabilities of a certain algorithm. Therefore, one of the main purposes of this article is to provide an algorithm that can intelligently balance between exploration and exploitation, so that it can balance exploration and exploitation capabilities. Later, in the research process, it was found that the sine and cosine function and the salp foraging trajectory have a high mathematical similarity, which greatly improves the optimization ability of the algorithm. In addition, the variable neighbourhood strategy can appropriately expand the optimization range of the algorithm. So in this paper, a novel golden sine cosine salp swarm algorithm with variable neighbourhood search scheme (GSCSSA‐VNS) is proposed, the another objective of proposing this algorithm is as a new optimization method for shape matching. As a relatively new branch, atomic potential matching (APM) model is inspired by potential field attractions. Compared to the conventional edge potential function (EPF) model, APM has been verified to be less sensitive to intricate backgrounds in the test image and far more cost effective in the computation process. Experimental results of four realistic examples show that GSCSSA‐VNS is able to provide very competitive results and outperforms the other algorithms." @default.
- W3217784756 created "2021-12-06" @default.
- W3217784756 creator A5031740523 @default.
- W3217784756 creator A5036654822 @default.
- W3217784756 creator A5038735863 @default.
- W3217784756 creator A5050216209 @default.
- W3217784756 date "2021-11-23" @default.
- W3217784756 modified "2023-10-04" @default.
- W3217784756 title "Golden sine cosine SALP swarm algorithm for shape matching using atomic potential function" @default.
- W3217784756 cites W1102883814 @default.
- W3217784756 cites W1539750858 @default.
- W3217784756 cites W1541288193 @default.
- W3217784756 cites W1560962014 @default.
- W3217784756 cites W1595159159 @default.
- W3217784756 cites W1595580983 @default.
- W3217784756 cites W1967194140 @default.
- W3217784756 cites W1975325338 @default.
- W3217784756 cites W1976744965 @default.
- W3217784756 cites W1977140987 @default.
- W3217784756 cites W1993885071 @default.
- W3217784756 cites W1999284878 @default.
- W3217784756 cites W2007488457 @default.
- W3217784756 cites W2013511259 @default.
- W3217784756 cites W2031183907 @default.
- W3217784756 cites W2033011996 @default.
- W3217784756 cites W2039595530 @default.
- W3217784756 cites W2044694850 @default.
- W3217784756 cites W2061438946 @default.
- W3217784756 cites W2069657950 @default.
- W3217784756 cites W2072955302 @default.
- W3217784756 cites W2081686299 @default.
- W3217784756 cites W2091638274 @default.
- W3217784756 cites W2096166399 @default.
- W3217784756 cites W2100718938 @default.
- W3217784756 cites W2102785645 @default.
- W3217784756 cites W2103712064 @default.
- W3217784756 cites W2136554306 @default.
- W3217784756 cites W2142079327 @default.
- W3217784756 cites W2151554678 @default.
- W3217784756 cites W2154943049 @default.
- W3217784756 cites W2162302936 @default.
- W3217784756 cites W2202988484 @default.
- W3217784756 cites W2232317135 @default.
- W3217784756 cites W2290883490 @default.
- W3217784756 cites W2379795777 @default.
- W3217784756 cites W2516567929 @default.
- W3217784756 cites W2516969599 @default.
- W3217784756 cites W2620983293 @default.
- W3217784756 cites W2738900493 @default.
- W3217784756 cites W2745838971 @default.
- W3217784756 cites W2746426115 @default.
- W3217784756 cites W2751219571 @default.
- W3217784756 cites W2761388352 @default.
- W3217784756 cites W2768434535 @default.
- W3217784756 cites W2785201102 @default.
- W3217784756 cites W2789457647 @default.
- W3217784756 cites W2790662215 @default.
- W3217784756 cites W2792689221 @default.
- W3217784756 cites W2810185300 @default.
- W3217784756 cites W2888005036 @default.
- W3217784756 cites W2889803518 @default.
- W3217784756 cites W2898785807 @default.
- W3217784756 cites W2903572049 @default.
- W3217784756 cites W2909568655 @default.
- W3217784756 cites W2913868656 @default.
- W3217784756 cites W2919979744 @default.
- W3217784756 cites W2921575212 @default.
- W3217784756 cites W2927975789 @default.
- W3217784756 cites W2939121681 @default.
- W3217784756 cites W2946297054 @default.
- W3217784756 cites W2965078190 @default.
- W3217784756 cites W2976525124 @default.
- W3217784756 cites W2981134806 @default.
- W3217784756 cites W2985033708 @default.
- W3217784756 cites W2985845430 @default.
- W3217784756 cites W2990390143 @default.
- W3217784756 cites W2990723369 @default.
- W3217784756 cites W3006986714 @default.
- W3217784756 cites W3008942622 @default.
- W3217784756 cites W3009736721 @default.
- W3217784756 cites W3013459654 @default.
- W3217784756 cites W3015191350 @default.
- W3217784756 cites W3015759889 @default.
- W3217784756 cites W3016057476 @default.
- W3217784756 cites W3023976207 @default.
- W3217784756 cites W3029261698 @default.
- W3217784756 cites W3032795379 @default.
- W3217784756 cites W3100933494 @default.
- W3217784756 cites W4210580908 @default.
- W3217784756 cites W4253572110 @default.
- W3217784756 cites W4292083457 @default.
- W3217784756 cites W5269967 @default.
- W3217784756 cites W904440434 @default.
- W3217784756 cites W978997059 @default.
- W3217784756 doi "https://doi.org/10.1111/exsy.12854" @default.
- W3217784756 hasPublicationYear "2021" @default.
- W3217784756 type Work @default.
- W3217784756 sameAs 3217784756 @default.
- W3217784756 citedByCount "3" @default.
- W3217784756 countsByYear W32177847562022 @default.