Matches in SemOpenAlex for { <https://semopenalex.org/work/W3217791106> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W3217791106 endingPage "2053" @default.
- W3217791106 startingPage "2053" @default.
- W3217791106 abstract "<p style='text-indent:20px;'>Let <inline-formula><tex-math id=M1>begin{document}$ mathit{boldsymbol{mathrm{G}}} $end{document}</tex-math></inline-formula> be a semisimple linear algebraic group defined over rational numbers, <inline-formula><tex-math id=M2>begin{document}$ mathrm{K} $end{document}</tex-math></inline-formula> be a maximal compact subgroup of its real points and <inline-formula><tex-math id=M3>begin{document}$ Gamma $end{document}</tex-math></inline-formula> be an arithmetic lattice. One can associate a probability measure <inline-formula><tex-math id=M4>begin{document}$ mu_{ mathrm{H}} $end{document}</tex-math></inline-formula> on <inline-formula><tex-math id=M5>begin{document}$ Gamma backslash mathrm{G} $end{document}</tex-math></inline-formula> for each subgroup <inline-formula><tex-math id=M6>begin{document}$ mathit{boldsymbol{mathrm{H}}} $end{document}</tex-math></inline-formula> of <inline-formula><tex-math id=M7>begin{document}$ mathit{boldsymbol{mathrm{G}}} $end{document}</tex-math></inline-formula> defined over <inline-formula><tex-math id=M8>begin{document}$ mathbb{Q} $end{document}</tex-math></inline-formula> with no non-trivial rational characters. As G acts on <inline-formula><tex-math id=M9>begin{document}$ Gamma backslash mathrm{G} $end{document}</tex-math></inline-formula> from the right, we can push forward this measure by elements from <inline-formula><tex-math id=M10>begin{document}$ mathrm{G} $end{document}</tex-math></inline-formula>. By pushing down these measures to <inline-formula><tex-math id=M11>begin{document}$ Gamma backslash mathrm{G}/ mathrm{K} $end{document}</tex-math></inline-formula>, we call them homogeneous. It is a natural question to ask what are the possible weak-<inline-formula><tex-math id=M12>begin{document}$ * $end{document}</tex-math></inline-formula> limits of homogeneous measures. In the non-divergent case this has been answered by Eskin–Mozes–Shah. In the divergent case Daw–Gorodnik–Ullmo prove a refined version in some non-trivial compactifications of <inline-formula><tex-math id=M13>begin{document}$ Gamma backslash mathrm{G}/ mathrm{K} $end{document}</tex-math></inline-formula> for <inline-formula><tex-math id=M14>begin{document}$ mathit{boldsymbol{mathrm{H}}} $end{document}</tex-math></inline-formula> generated by real unipotents. In the present article we build on their work and generalize the theorem to the case of general <inline-formula><tex-math id=M15>begin{document}$ mathit{boldsymbol{mathrm{H}}} $end{document}</tex-math></inline-formula> with no non-trivial rational characters. Our results rely on (1) a non-divergent criterion on <inline-formula><tex-math id=M16>begin{document}$ {text{SL}}_n $end{document}</tex-math></inline-formula> proved by geometry of numbers and a theorem of Kleinbock–Margulis; (2) relations between partial Borel–Serre compactifications associated with different groups proved by geometric invariant theory and reduction theory. <b>193</b> words.</p>" @default.
- W3217791106 created "2021-12-06" @default.
- W3217791106 creator A5083154414 @default.
- W3217791106 date "2022-01-01" @default.
- W3217791106 modified "2023-09-25" @default.
- W3217791106 title "Equidistribution of translates of a homogeneous measure on the Borel–Serre compactification" @default.
- W3217791106 cites W1551575394 @default.
- W3217791106 cites W1584561919 @default.
- W3217791106 cites W186260808 @default.
- W3217791106 cites W1974099924 @default.
- W3217791106 cites W1979867642 @default.
- W3217791106 cites W1991150663 @default.
- W3217791106 cites W2019132527 @default.
- W3217791106 cites W2030314697 @default.
- W3217791106 cites W2049543004 @default.
- W3217791106 cites W2055804411 @default.
- W3217791106 cites W2063309911 @default.
- W3217791106 cites W2090467845 @default.
- W3217791106 cites W2106512332 @default.
- W3217791106 cites W2139971737 @default.
- W3217791106 cites W2156872184 @default.
- W3217791106 cites W2326768845 @default.
- W3217791106 cites W3015452857 @default.
- W3217791106 cites W3038431465 @default.
- W3217791106 doi "https://doi.org/10.3934/dcds.2021183" @default.
- W3217791106 hasPublicationYear "2022" @default.
- W3217791106 type Work @default.
- W3217791106 sameAs 3217791106 @default.
- W3217791106 citedByCount "0" @default.
- W3217791106 crossrefType "journal-article" @default.
- W3217791106 hasAuthorship W3217791106A5083154414 @default.
- W3217791106 hasBestOaLocation W32177911061 @default.
- W3217791106 hasConcept C114614502 @default.
- W3217791106 hasConcept C33923547 @default.
- W3217791106 hasConcept C66882249 @default.
- W3217791106 hasConcept C94375191 @default.
- W3217791106 hasConceptScore W3217791106C114614502 @default.
- W3217791106 hasConceptScore W3217791106C33923547 @default.
- W3217791106 hasConceptScore W3217791106C66882249 @default.
- W3217791106 hasConceptScore W3217791106C94375191 @default.
- W3217791106 hasIssue "4" @default.
- W3217791106 hasLocation W32177911061 @default.
- W3217791106 hasOpenAccess W3217791106 @default.
- W3217791106 hasPrimaryLocation W32177911061 @default.
- W3217791106 hasRelatedWork W1978042415 @default.
- W3217791106 hasRelatedWork W1994589449 @default.
- W3217791106 hasRelatedWork W2061845982 @default.
- W3217791106 hasRelatedWork W2065880152 @default.
- W3217791106 hasRelatedWork W2327776733 @default.
- W3217791106 hasRelatedWork W2371101167 @default.
- W3217791106 hasRelatedWork W2594224074 @default.
- W3217791106 hasRelatedWork W2741030450 @default.
- W3217791106 hasRelatedWork W3134723363 @default.
- W3217791106 hasRelatedWork W3154129246 @default.
- W3217791106 hasVolume "42" @default.
- W3217791106 isParatext "false" @default.
- W3217791106 isRetracted "false" @default.
- W3217791106 magId "3217791106" @default.
- W3217791106 workType "article" @default.