Matches in SemOpenAlex for { <https://semopenalex.org/work/W322643198> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W322643198 endingPage "150" @default.
- W322643198 startingPage "139" @default.
- W322643198 abstract "In this study, the combination of artificial neural network (ANN) and ant colony optimization (ACO) algorithm has been utilized for modeling and reducing NOx and soot emissions from a direct injection diesel engine. A feed-forward multi-layer perceptron (MLP) network is used to represent the relationship between the input parameters (i.e., engine speed, intake air temperature, rate of fuel mass injected, and power) on the one hand and the output parameters (i.e., NOx and soot emissions) on the other hand. The ACO algorithm is employed to find the optimum air intake temperatures and the rates of fuel mass injected for different engine speeds and powers with the purpose of simultaneous reduction of NOx and soot. The obtained results reveal that the ANN can appropriately model the exhaust NOx and soot emissions with the correlation factors of 0.98, 0.96, respectively. Further, the employed ACO algorithm gives rise to 32% and 7% reduction in the NOx and soot, respectively. The response time of the optimization process was obtained to be less than 4 min for the particular PC system used in the present work. The high accuracy and speed of the model show its potential for application in intelligent controlling systems of the diesel engines." @default.
- W322643198 created "2016-06-24" @default.
- W322643198 creator A5044430264 @default.
- W322643198 creator A5048903753 @default.
- W322643198 creator A5060968284 @default.
- W322643198 creator A5074853914 @default.
- W322643198 date "2015-09-01" @default.
- W322643198 modified "2023-09-25" @default.
- W322643198 title "Prediction and reduction of diesel engine emissions using a combined ANN–ACO method" @default.
- W322643198 cites W1538669237 @default.
- W322643198 cites W1970214772 @default.
- W322643198 cites W1975863443 @default.
- W322643198 cites W1985421308 @default.
- W322643198 cites W1986972444 @default.
- W322643198 cites W1995341919 @default.
- W322643198 cites W2013205100 @default.
- W322643198 cites W2026083729 @default.
- W322643198 cites W2031795735 @default.
- W322643198 cites W2044341274 @default.
- W322643198 cites W2053735963 @default.
- W322643198 cites W2107941094 @default.
- W322643198 cites W2131931949 @default.
- W322643198 cites W2145622829 @default.
- W322643198 cites W2154929945 @default.
- W322643198 doi "https://doi.org/10.1016/j.asoc.2015.04.059" @default.
- W322643198 hasPublicationYear "2015" @default.
- W322643198 type Work @default.
- W322643198 sameAs 322643198 @default.
- W322643198 citedByCount "54" @default.
- W322643198 countsByYear W3226431982016 @default.
- W322643198 countsByYear W3226431982017 @default.
- W322643198 countsByYear W3226431982019 @default.
- W322643198 countsByYear W3226431982020 @default.
- W322643198 countsByYear W3226431982021 @default.
- W322643198 countsByYear W3226431982022 @default.
- W322643198 countsByYear W3226431982023 @default.
- W322643198 crossrefType "journal-article" @default.
- W322643198 hasAuthorship W322643198A5044430264 @default.
- W322643198 hasAuthorship W322643198A5048903753 @default.
- W322643198 hasAuthorship W322643198A5060968284 @default.
- W322643198 hasAuthorship W322643198A5074853914 @default.
- W322643198 hasConcept C105923489 @default.
- W322643198 hasConcept C111335779 @default.
- W322643198 hasConcept C127413603 @default.
- W322643198 hasConcept C138171918 @default.
- W322643198 hasConcept C154945302 @default.
- W322643198 hasConcept C171146098 @default.
- W322643198 hasConcept C178790620 @default.
- W322643198 hasConcept C185592680 @default.
- W322643198 hasConcept C203032635 @default.
- W322643198 hasConcept C21880701 @default.
- W322643198 hasConcept C2524010 @default.
- W322643198 hasConcept C2775925408 @default.
- W322643198 hasConcept C2780804531 @default.
- W322643198 hasConcept C33923547 @default.
- W322643198 hasConcept C39432304 @default.
- W322643198 hasConcept C41008148 @default.
- W322643198 hasConcept C50644808 @default.
- W322643198 hasConceptScore W322643198C105923489 @default.
- W322643198 hasConceptScore W322643198C111335779 @default.
- W322643198 hasConceptScore W322643198C127413603 @default.
- W322643198 hasConceptScore W322643198C138171918 @default.
- W322643198 hasConceptScore W322643198C154945302 @default.
- W322643198 hasConceptScore W322643198C171146098 @default.
- W322643198 hasConceptScore W322643198C178790620 @default.
- W322643198 hasConceptScore W322643198C185592680 @default.
- W322643198 hasConceptScore W322643198C203032635 @default.
- W322643198 hasConceptScore W322643198C21880701 @default.
- W322643198 hasConceptScore W322643198C2524010 @default.
- W322643198 hasConceptScore W322643198C2775925408 @default.
- W322643198 hasConceptScore W322643198C2780804531 @default.
- W322643198 hasConceptScore W322643198C33923547 @default.
- W322643198 hasConceptScore W322643198C39432304 @default.
- W322643198 hasConceptScore W322643198C41008148 @default.
- W322643198 hasConceptScore W322643198C50644808 @default.
- W322643198 hasLocation W3226431981 @default.
- W322643198 hasOpenAccess W322643198 @default.
- W322643198 hasPrimaryLocation W3226431981 @default.
- W322643198 hasRelatedWork W2042865447 @default.
- W322643198 hasRelatedWork W2182738757 @default.
- W322643198 hasRelatedWork W2349634218 @default.
- W322643198 hasRelatedWork W2358437126 @default.
- W322643198 hasRelatedWork W2359102137 @default.
- W322643198 hasRelatedWork W2380110951 @default.
- W322643198 hasRelatedWork W2386975376 @default.
- W322643198 hasRelatedWork W2951265442 @default.
- W322643198 hasRelatedWork W3209885348 @default.
- W322643198 hasRelatedWork W4281653846 @default.
- W322643198 hasVolume "34" @default.
- W322643198 isParatext "false" @default.
- W322643198 isRetracted "false" @default.
- W322643198 magId "322643198" @default.
- W322643198 workType "article" @default.