Matches in SemOpenAlex for { <https://semopenalex.org/work/W324725987> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W324725987 startingPage "68" @default.
- W324725987 abstract "Abstract. Recent years have seen increasing interest in techniques of opinion mining and subjectivity analysis. In this article, we outline the results generated by our approach detecting features for the classification polarity of opinions in French language using machine learning techniques. Indeed, in sentiment analysis, identifying features associated with an opinion can help produce a finer-grained understanding of subjective previews. In this article, the proposed system consists of three phases: the pretreatments of the corpus, the extraction of the features and the classification. The second phase of our work represents the combination of the co-occurrence analysis for a better management of the intrinsic semantics of a word carrying opinion, and therefore a better extraction of features for classification.Keywords: opinion mining, intrinsic semantics, polarity classification, Textometry, co-occurrence, Features extraction.(ProQuest: ... denotes formulae omitted.)1 INTRODUCTIONDetection of opinions (also known as Sentiment Analysis) is the subject of a particular craze whether in academia or industry. Indeed, with the emergence of discussion groups, forums, blogs and compiling consumer reviews site, there is a very large mass of documents containing information expressing opinions, constituting a huge source of data for various applications survey (technological, marketing, competitive, societal). Much research at the crossroads of NLP and data mining, is addressing the problem of detecting opinions. The of approach is one of the first models of textual representation, which is still today often used for sentiment analysis. The text is represented as a set of n-grams without consideration of their order of appearance and relationships in the text. Traditional approaches in machine learning (Naive Bayes or SVM) then use this representation construct sentiments classification systems.The accuracy of this kind of approach can be very high, especially when advanced features selection techniques are used in conjunction with additional lexicons extracted from texts previously identified as a carrier of opinion. However, we believe that model properties can identify more complex expressions of sentiments beyond simple recognition of opinionated construction, which should allow obtaining better classification systems. One problem with the bag of words approach is the loss of information during the construction of textual representation, seen as collections of differentiated terms. Yet, the relationship between the words in the text are often very important when determining whether the degree or the polarity of a sentiment.In this article, we present the method used for the selection of textual features used by machine learning methods. For this, we proceeded the preparation of data using tools of textometric analysis select those features. Many researchers have worked on the identification of features and sentiments. (Hu & Liu, 2004; Liu et al., 2005) proposed several techniques for mining feature-associated opinions expressed in reviews. In (Su et al., 2008) an unsupervised approach based on the mutual reinforcement principle is presented. Their approach clusters features and opinion words simultaneously by using both content and link information. To identify the feature-sentiment pair for real-life reviews, a new statistical Natural Language Processing approach that combines both syntactic and statistic knowledge was proposed in (Hai et al., 2010). These are used as a vector representation of the texts so that they can be used for supervised learning. To make this selection, we assume the following postulate: to choose between positive or negative polarity of a text, we shall merely detect in it the indicators of opinions. Several methods can be used, for example the presence or absence of a set of determined words, the location of certain words (Hai et al. …" @default.
- W324725987 created "2016-06-24" @default.
- W324725987 creator A5041279600 @default.
- W324725987 creator A5076196004 @default.
- W324725987 date "2013-11-01" @default.
- W324725987 modified "2023-09-28" @default.
- W324725987 title "Feature selection for opinion polarity detection by machine learning method" @default.
- W324725987 hasPublicationYear "2013" @default.
- W324725987 type Work @default.
- W324725987 sameAs 324725987 @default.
- W324725987 citedByCount "0" @default.
- W324725987 crossrefType "journal-article" @default.
- W324725987 hasAuthorship W324725987A5041279600 @default.
- W324725987 hasAuthorship W324725987A5076196004 @default.
- W324725987 hasConcept C1491633281 @default.
- W324725987 hasConcept C154945302 @default.
- W324725987 hasConcept C177264268 @default.
- W324725987 hasConcept C17744445 @default.
- W324725987 hasConcept C184337299 @default.
- W324725987 hasConcept C195807954 @default.
- W324725987 hasConcept C199360897 @default.
- W324725987 hasConcept C199539241 @default.
- W324725987 hasConcept C204321447 @default.
- W324725987 hasConcept C23123220 @default.
- W324725987 hasConcept C2522767166 @default.
- W324725987 hasConcept C2776359362 @default.
- W324725987 hasConcept C2777361361 @default.
- W324725987 hasConcept C41008148 @default.
- W324725987 hasConcept C54355233 @default.
- W324725987 hasConcept C66402592 @default.
- W324725987 hasConcept C81917197 @default.
- W324725987 hasConcept C86803240 @default.
- W324725987 hasConcept C94625758 @default.
- W324725987 hasConceptScore W324725987C1491633281 @default.
- W324725987 hasConceptScore W324725987C154945302 @default.
- W324725987 hasConceptScore W324725987C177264268 @default.
- W324725987 hasConceptScore W324725987C17744445 @default.
- W324725987 hasConceptScore W324725987C184337299 @default.
- W324725987 hasConceptScore W324725987C195807954 @default.
- W324725987 hasConceptScore W324725987C199360897 @default.
- W324725987 hasConceptScore W324725987C199539241 @default.
- W324725987 hasConceptScore W324725987C204321447 @default.
- W324725987 hasConceptScore W324725987C23123220 @default.
- W324725987 hasConceptScore W324725987C2522767166 @default.
- W324725987 hasConceptScore W324725987C2776359362 @default.
- W324725987 hasConceptScore W324725987C2777361361 @default.
- W324725987 hasConceptScore W324725987C41008148 @default.
- W324725987 hasConceptScore W324725987C54355233 @default.
- W324725987 hasConceptScore W324725987C66402592 @default.
- W324725987 hasConceptScore W324725987C81917197 @default.
- W324725987 hasConceptScore W324725987C86803240 @default.
- W324725987 hasConceptScore W324725987C94625758 @default.
- W324725987 hasIssue "6" @default.
- W324725987 hasLocation W3247259871 @default.
- W324725987 hasOpenAccess W324725987 @default.
- W324725987 hasPrimaryLocation W3247259871 @default.
- W324725987 hasRelatedWork W10582454 @default.
- W324725987 hasRelatedWork W169054026 @default.
- W324725987 hasRelatedWork W1977593555 @default.
- W324725987 hasRelatedWork W2027648498 @default.
- W324725987 hasRelatedWork W2060701185 @default.
- W324725987 hasRelatedWork W2076095095 @default.
- W324725987 hasRelatedWork W2164869254 @default.
- W324725987 hasRelatedWork W2169350739 @default.
- W324725987 hasRelatedWork W2185374811 @default.
- W324725987 hasRelatedWork W2283565770 @default.
- W324725987 hasRelatedWork W2625878254 @default.
- W324725987 hasRelatedWork W2898263808 @default.
- W324725987 hasRelatedWork W2903688408 @default.
- W324725987 hasRelatedWork W2904181822 @default.
- W324725987 hasRelatedWork W2964649370 @default.
- W324725987 hasRelatedWork W2966419214 @default.
- W324725987 hasRelatedWork W2996475580 @default.
- W324725987 hasRelatedWork W3045311336 @default.
- W324725987 hasRelatedWork W3099057259 @default.
- W324725987 hasRelatedWork W3209240709 @default.
- W324725987 hasVolume "5" @default.
- W324725987 isParatext "false" @default.
- W324725987 isRetracted "false" @default.
- W324725987 magId "324725987" @default.
- W324725987 workType "article" @default.