Matches in SemOpenAlex for { <https://semopenalex.org/work/W3255668> ?p ?o ?g. }
- W3255668 abstract "This thesis addresses the topic of nonlinear estimation and its applications. Particular emphasis is given to downhole pressure estimation for Managed Pressure Drilling (MPD), but due to the mathematical similarities of the two problems, velocity estimation for mechanical systems is also considered. The thesis consists of the following three parts:Part I of this thesis addresses the problem of pressure estimation for MPD systems. Over the last decade MPD has emerged as a tool for drilling offshore wells with tight pressure margins. Several technologies for MPD have been developed and this thesis focuses on the so called constant bottomhole pressure variation. This version of MPD aims at keeping the pressure at one location in the annulus section of a well constant by applying back-pressure through the use of a choke manifold at the rig. As the pressure profile in the well is not measured, a key element of any control system (manual or automatic) is some sort of estimation scheme for the pressure in the well. To aid in control design for MPD systems, and to solve the pressure estimation problem, a fit for purpose low order model has been developed. Using data from offshore wells, and dedicated experiments onshore, it is demonstrated that the model captures the dominant pressure dynamics. It is also demonstrated that a newly developed adaptive observer, combined with a recursive least squares parameter identification scheme, is able to predict the downhole pressure in the presence of significant parametric uncertainties. Part II of this thesis addresses the problem of adaptive observer design for a class of nonlinear systems including the drilling model. To estimate unmeasured states, in dynamical systems with parametric uncertainties, one can use adaptive observers. Furthermore, if the system is sufficiently (persistently) excited, adaptive observers can be used to identify uncertain parameters. The current state of the art in adaptive observer design does not cover the class of systems to which the drilling model belongs. Motivated by this, a method for adaptive observer design for this class of systems is developed. The method guarantees stability and convergence of the state estimate without requiring persistent excitation. Another weakness with the current state of the art is that existing Lyapunov based adaptive laws have poor parameter identification properties, and can be very hard to tune, when estimating more than one parameter. This motivated the developement of an adaptive observer design that uses multiple delayed observers to improve the convergence rate of the estimation scheme, at the cost of an increased computational burden. In particular, explicit lower bounds on the convergence rate of the state and parameter estimation error are given, and, if the original non-adaptive observer has tunable convergence rate, the redesigned adaptive observer will have tunable convergence rate as well. Part III of this thesis addresses the topic of observer-based output feedback control of general Euler-Lagrange systems. The design of a globally stabilizing output (position) feedback tracking controller for general Euler-Lagrange systems has been an active field of research for at least two decades. Still, it was not until recently that a globally convergent velocity observer was developed. In part III of this thesis a significant obstacle in the development of a constructive observer design is removed yielding a constructive speed observer design with global performance guarantees. In addition, a separation principle is proven, guaranteeing global stability and convergence when the observer is used in conjunction with certain types of certainty equivalence controllers. To the best of the authors knowledge this represents the first observer-based output feedback tracking control solution that guarantees a global region of attraction for general Euler-Lagrange systems." @default.
- W3255668 created "2016-06-24" @default.
- W3255668 creator A5010505114 @default.
- W3255668 date "2011-01-01" @default.
- W3255668 modified "2023-09-23" @default.
- W3255668 title "Nonlinear Estimation with Applications to Drilling" @default.
- W3255668 cites W132594803 @default.
- W3255668 cites W133082144 @default.
- W3255668 cites W1491077795 @default.
- W3255668 cites W1500564636 @default.
- W3255668 cites W1509235676 @default.
- W3255668 cites W1534096605 @default.
- W3255668 cites W1548067494 @default.
- W3255668 cites W1572161815 @default.
- W3255668 cites W1611538460 @default.
- W3255668 cites W194456869 @default.
- W3255668 cites W1963688148 @default.
- W3255668 cites W1965324089 @default.
- W3255668 cites W1968459792 @default.
- W3255668 cites W1970707451 @default.
- W3255668 cites W1974297975 @default.
- W3255668 cites W1975765171 @default.
- W3255668 cites W1977160165 @default.
- W3255668 cites W1977840056 @default.
- W3255668 cites W1978513307 @default.
- W3255668 cites W1983076328 @default.
- W3255668 cites W1990930250 @default.
- W3255668 cites W1992501295 @default.
- W3255668 cites W1996293513 @default.
- W3255668 cites W1998509611 @default.
- W3255668 cites W1998527076 @default.
- W3255668 cites W2001597085 @default.
- W3255668 cites W2003015343 @default.
- W3255668 cites W2005250953 @default.
- W3255668 cites W2005355979 @default.
- W3255668 cites W2007315969 @default.
- W3255668 cites W2007981460 @default.
- W3255668 cites W2010292059 @default.
- W3255668 cites W2011757561 @default.
- W3255668 cites W2012644283 @default.
- W3255668 cites W2013188042 @default.
- W3255668 cites W2014989002 @default.
- W3255668 cites W2015304018 @default.
- W3255668 cites W2018344982 @default.
- W3255668 cites W2019820755 @default.
- W3255668 cites W2020934227 @default.
- W3255668 cites W2021956888 @default.
- W3255668 cites W2023232740 @default.
- W3255668 cites W2023280546 @default.
- W3255668 cites W2023596262 @default.
- W3255668 cites W2023712177 @default.
- W3255668 cites W2024951173 @default.
- W3255668 cites W2027903619 @default.
- W3255668 cites W2029144431 @default.
- W3255668 cites W2030599094 @default.
- W3255668 cites W2030759774 @default.
- W3255668 cites W2035362677 @default.
- W3255668 cites W2040295150 @default.
- W3255668 cites W2044522710 @default.
- W3255668 cites W2045795093 @default.
- W3255668 cites W2050831785 @default.
- W3255668 cites W2052095577 @default.
- W3255668 cites W2052691061 @default.
- W3255668 cites W2058731737 @default.
- W3255668 cites W2059459207 @default.
- W3255668 cites W2062105353 @default.
- W3255668 cites W2067067397 @default.
- W3255668 cites W2067603665 @default.
- W3255668 cites W2069469544 @default.
- W3255668 cites W2071115123 @default.
- W3255668 cites W2072238049 @default.
- W3255668 cites W2077613214 @default.
- W3255668 cites W2081212520 @default.
- W3255668 cites W2082821917 @default.
- W3255668 cites W2083402998 @default.
- W3255668 cites W2083483041 @default.
- W3255668 cites W2084828843 @default.
- W3255668 cites W2090167557 @default.
- W3255668 cites W2092116813 @default.
- W3255668 cites W2092836456 @default.
- W3255668 cites W2092997145 @default.
- W3255668 cites W2093352963 @default.
- W3255668 cites W2097089521 @default.
- W3255668 cites W2097609836 @default.
- W3255668 cites W2102661165 @default.
- W3255668 cites W2104416740 @default.
- W3255668 cites W2105934661 @default.
- W3255668 cites W2109650081 @default.
- W3255668 cites W2115643458 @default.
- W3255668 cites W2115852080 @default.
- W3255668 cites W2116982362 @default.
- W3255668 cites W2121990344 @default.
- W3255668 cites W2124615478 @default.
- W3255668 cites W2126509476 @default.
- W3255668 cites W2137371449 @default.
- W3255668 cites W2138961593 @default.
- W3255668 cites W2140985802 @default.
- W3255668 cites W2141046429 @default.
- W3255668 cites W2142332642 @default.
- W3255668 cites W2145415070 @default.