Matches in SemOpenAlex for { <https://semopenalex.org/work/W329376905> ?p ?o ?g. }
- W329376905 abstract "We study fundamental problems for static and mobile networks. First, we consider the random geometric graph model, which is a well-known model for static wireless networks. In this model, n nodes are distributed independently and uniformly at random in the d-dimensional torus of volume n and edges are added betweenpairs of nodes whose Euclidean distance is at most some parameter r. We consider the case where r is a sufficiently large constant so that a so-called giant component (a connected component with Theta(n) nodes) exists with high probability. In this setting, we show that the graph distance between every pair of nodes whose Euclidean distance is sufficiently large is only a constant factor larger than their Euclidean distance. This result gives, as a corollary, that the diameter of the giant component is Theta(n^{1/d}/r). Then, we apply this result to analyze the performance of a broadcast algorithm known as the push algorithm. In this algorithm, at each discrete time step, each informed node choosesa neighbor independently and uniformly at random and informs it. We show that the push algorithm informs all nodes of the giant component of a random geometric graph within a number of steps that is only a constant factor larger then the diameter of the giant component.In the second part of the thesis, we consider a model of mobile graphs that we call mobile geometric graphs, and which is an extension of the random geometric graph model to the setting where nodes are not static but are moving in space in continuous time. In this model, we start with a random geometric graph and let the nodes move as independent Brownian motions. Then, at any given time, there exists an edge between every pair of nodes whose Euclidean distance at that time is at most r. This model has been recently used as a model for mobile wireless networks.We study four fundamental problems in this model: detection (the time until a target point---fixed or moving---iswithin distance r of some node of the graph); coverage (the time until all points insidea finite box are detected by the graph);percolation (the time until a given node belongs to the giant component of the graph) and broadcast (the time until all nodes of the graph receive a piece of information that was initially known by a single node).We obtain precise asymptotics for these quantities by combining ideas from stochastic geometry,coupling and multi-scale analysis.Finally, in the last part of the thesis, we revisit the push algorithm described above and study its performance in general regular graphs. Our goal is to understand the relation between the performance of the push algorithm and the vertex expansion of the graph.We prove an upper bound for the runtime of this algorithm that depends on the vertex expansion of the graph and is tight up to polylogarithmic factors.Then, we show that there exists a substantial difference between the impact of vertex expansion and edge expansion on the performance of the push algorithm. In particular, we prove the existence of regular graphs (which are also vertex transitive) that have constant vertex expansion and for which the runtime of the push algorithm is a factor of Omega(log n) slower than on any regular graph with constant edge expansion." @default.
- W329376905 created "2016-06-24" @default.
- W329376905 creator A5013068717 @default.
- W329376905 date "2011-01-01" @default.
- W329376905 modified "2023-09-27" @default.
- W329376905 title "Structural and Algorithmic Properties of Static and Mobile Random Geometric Graphs" @default.
- W329376905 cites W1552716511 @default.
- W329376905 cites W1565820656 @default.
- W329376905 cites W1573073746 @default.
- W329376905 cites W1595409123 @default.
- W329376905 cites W1598398029 @default.
- W329376905 cites W1631603072 @default.
- W329376905 cites W1771950282 @default.
- W329376905 cites W1804815103 @default.
- W329376905 cites W1918250237 @default.
- W329376905 cites W1970542229 @default.
- W329376905 cites W1984977694 @default.
- W329376905 cites W1986556763 @default.
- W329376905 cites W1992260886 @default.
- W329376905 cites W1998076608 @default.
- W329376905 cites W2000285226 @default.
- W329376905 cites W2009356484 @default.
- W329376905 cites W2014705821 @default.
- W329376905 cites W2016123342 @default.
- W329376905 cites W2019094329 @default.
- W329376905 cites W2022884553 @default.
- W329376905 cites W2035075784 @default.
- W329376905 cites W2038562061 @default.
- W329376905 cites W2042881845 @default.
- W329376905 cites W2044541981 @default.
- W329376905 cites W2047784567 @default.
- W329376905 cites W2047812461 @default.
- W329376905 cites W2048572907 @default.
- W329376905 cites W2058322021 @default.
- W329376905 cites W2059014957 @default.
- W329376905 cites W2059725015 @default.
- W329376905 cites W2064575363 @default.
- W329376905 cites W2068871408 @default.
- W329376905 cites W2069513189 @default.
- W329376905 cites W2074290774 @default.
- W329376905 cites W2076305111 @default.
- W329376905 cites W2077897483 @default.
- W329376905 cites W2078381259 @default.
- W329376905 cites W2080022754 @default.
- W329376905 cites W2081924675 @default.
- W329376905 cites W2088521668 @default.
- W329376905 cites W2100307883 @default.
- W329376905 cites W2103998840 @default.
- W329376905 cites W2107794428 @default.
- W329376905 cites W2110100895 @default.
- W329376905 cites W2110577879 @default.
- W329376905 cites W2112316694 @default.
- W329376905 cites W2117905067 @default.
- W329376905 cites W2118166339 @default.
- W329376905 cites W2121284046 @default.
- W329376905 cites W2122337202 @default.
- W329376905 cites W2125664420 @default.
- W329376905 cites W2131605925 @default.
- W329376905 cites W2135356058 @default.
- W329376905 cites W2137775453 @default.
- W329376905 cites W2138025500 @default.
- W329376905 cites W2140234925 @default.
- W329376905 cites W2149345630 @default.
- W329376905 cites W2149959815 @default.
- W329376905 cites W2151647902 @default.
- W329376905 cites W2152628545 @default.
- W329376905 cites W2155869384 @default.
- W329376905 cites W2157004711 @default.
- W329376905 cites W2158348301 @default.
- W329376905 cites W2162752950 @default.
- W329376905 cites W2167064216 @default.
- W329376905 cites W2167805066 @default.
- W329376905 cites W2905110430 @default.
- W329376905 cites W2952868914 @default.
- W329376905 cites W2963396904 @default.
- W329376905 cites W3144881883 @default.
- W329376905 cites W630423399 @default.
- W329376905 hasPublicationYear "2011" @default.
- W329376905 type Work @default.
- W329376905 sameAs 329376905 @default.
- W329376905 citedByCount "0" @default.
- W329376905 crossrefType "journal-article" @default.
- W329376905 hasAuthorship W329376905A5013068717 @default.
- W329376905 hasConcept C114614502 @default.
- W329376905 hasConcept C118615104 @default.
- W329376905 hasConcept C121332964 @default.
- W329376905 hasConcept C129782007 @default.
- W329376905 hasConcept C132525143 @default.
- W329376905 hasConcept C148818006 @default.
- W329376905 hasConcept C168167062 @default.
- W329376905 hasConcept C173547177 @default.
- W329376905 hasConcept C193435613 @default.
- W329376905 hasConcept C203776342 @default.
- W329376905 hasConcept C22149727 @default.
- W329376905 hasConcept C2524010 @default.
- W329376905 hasConcept C2780012671 @default.
- W329376905 hasConcept C30609935 @default.
- W329376905 hasConcept C33923547 @default.
- W329376905 hasConcept C47458327 @default.
- W329376905 hasConcept C49777392 @default.