Matches in SemOpenAlex for { <https://semopenalex.org/work/W32958032> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W32958032 abstract "Decision support systems are important in leveraging the information present in large scale data repositories in many scientific and business applications. Data analysis and data mining on these warehouses pose new challenges for traditional database systems. On-Line Analytical Processing (OLAP) and data mining operations require summary information on these data sets. Query processing for these applications require different views of data for analysis and effective decision making. The multi-dimensional data model is a natural and intuitive approach for such applications. Data mining techniques can be applied in conjunction with OLAP for an integrated solution. As data warehouses grow, parallel processing techniques need to be applied to enable the use of larger data sets and reduce the time for analysis, thereby enabling evaluation of many more options for decision making. In this dissertation we focus on parallel processing techniques for scalable OLAP and data mining. A scalable parallel multi-dimensional infrastructure for OLAP integrated with data mining techniques like association rules and classification is designed and implemented. Multidimensional OLAP systems store data in a multidimensional structure on which analytical operations are performed. For large data sets and a large number of dimensions, multidimensional arrays are impractical and other efficient sparse data structures and techniques are required. We introduce a Bit-encoded sparse structure (BESS) for storage compression which allows aggregate operations on the compressed data. Pre-computed aggregate calculations in a Data Cube can provide efficient query processing for OLAP applications and data mining. We address the issues involved in parallel construction and maintenance of partial and full data cubes and answering OLAP queries and data mining tasks using them. In particular, issues relating to handling of large data sets, a large number of dimensions, sparse data structures, and parallelism are investigated. Algorithms are presented for our techniques which have been currently implemented on the IBM-SP2 parallel machine and can be ported to another parallel platform with minimal effort. Results show that our algorithms for OLAP and data mining on parallel systems are scalable to a large number of processors, large dimensions, and large data sets, providing a high performance platform for such applications." @default.
- W32958032 created "2016-06-24" @default.
- W32958032 creator A5008607560 @default.
- W32958032 creator A5074976770 @default.
- W32958032 date "1999-01-01" @default.
- W32958032 modified "2023-09-29" @default.
- W32958032 title "High-performance on-line analytical processing and data mining on parallel computers" @default.
- W32958032 hasPublicationYear "1999" @default.
- W32958032 type Work @default.
- W32958032 sameAs 32958032 @default.
- W32958032 citedByCount "3" @default.
- W32958032 crossrefType "journal-article" @default.
- W32958032 hasAuthorship W32958032A5008607560 @default.
- W32958032 hasAuthorship W32958032A5074976770 @default.
- W32958032 hasConcept C107327155 @default.
- W32958032 hasConcept C124101348 @default.
- W32958032 hasConcept C135572916 @default.
- W32958032 hasConcept C138827492 @default.
- W32958032 hasConcept C159985019 @default.
- W32958032 hasConcept C192562407 @default.
- W32958032 hasConcept C201932085 @default.
- W32958032 hasConcept C2522767166 @default.
- W32958032 hasConcept C41008148 @default.
- W32958032 hasConcept C4679612 @default.
- W32958032 hasConcept C48044578 @default.
- W32958032 hasConcept C77088390 @default.
- W32958032 hasConcept C78168278 @default.
- W32958032 hasConceptScore W32958032C107327155 @default.
- W32958032 hasConceptScore W32958032C124101348 @default.
- W32958032 hasConceptScore W32958032C135572916 @default.
- W32958032 hasConceptScore W32958032C138827492 @default.
- W32958032 hasConceptScore W32958032C159985019 @default.
- W32958032 hasConceptScore W32958032C192562407 @default.
- W32958032 hasConceptScore W32958032C201932085 @default.
- W32958032 hasConceptScore W32958032C2522767166 @default.
- W32958032 hasConceptScore W32958032C41008148 @default.
- W32958032 hasConceptScore W32958032C4679612 @default.
- W32958032 hasConceptScore W32958032C48044578 @default.
- W32958032 hasConceptScore W32958032C77088390 @default.
- W32958032 hasConceptScore W32958032C78168278 @default.
- W32958032 hasLocation W329580321 @default.
- W32958032 hasOpenAccess W32958032 @default.
- W32958032 hasPrimaryLocation W329580321 @default.
- W32958032 hasRelatedWork W113181503 @default.
- W32958032 hasRelatedWork W1160301755 @default.
- W32958032 hasRelatedWork W1545762963 @default.
- W32958032 hasRelatedWork W1551224131 @default.
- W32958032 hasRelatedWork W1561366042 @default.
- W32958032 hasRelatedWork W1768579885 @default.
- W32958032 hasRelatedWork W1793564634 @default.
- W32958032 hasRelatedWork W1852826252 @default.
- W32958032 hasRelatedWork W1923629821 @default.
- W32958032 hasRelatedWork W1952220400 @default.
- W32958032 hasRelatedWork W2043279389 @default.
- W32958032 hasRelatedWork W2072945702 @default.
- W32958032 hasRelatedWork W2077685126 @default.
- W32958032 hasRelatedWork W2116409255 @default.
- W32958032 hasRelatedWork W2152561460 @default.
- W32958032 hasRelatedWork W2157253748 @default.
- W32958032 hasRelatedWork W2365640869 @default.
- W32958032 hasRelatedWork W2536720175 @default.
- W32958032 hasRelatedWork W3136023138 @default.
- W32958032 hasRelatedWork W599733258 @default.
- W32958032 isParatext "false" @default.
- W32958032 isRetracted "false" @default.
- W32958032 magId "32958032" @default.
- W32958032 workType "article" @default.