Matches in SemOpenAlex for { <https://semopenalex.org/work/W32980360> ?p ?o ?g. }
- W32980360 abstract "Markov chain sampling methods that adapt to characteristics of the distribution being sampled can be constructed using the principle that one can ample from a distribution by sampling uniformly from the region under the plot of its density function. A Markov chain that converges to this uniform distribution can be constructed by alternating uniform sampling in the vertical direction with uniform sampling from the horizontal slice defined by the current vertical position, or more generally, with some update that leaves the uniform distribution over this slice invariant. Such slice sampling methods are easily implemented for univariate distributions, and can be used to sample from a multivariate distribution by updating each variable in turn. This approach is often easier to implement than Gibbs sampling and more efficient than simple Metropolis updates, due to the ability of slice sampling to adaptively choose the magnitude of changes made. It is therefore attractive for routine and automated use. Slice sampling methods that update all variables simultaneously are also possible. These methods can adaptively choose the magnitudes of changes made to each variable, based on the local properties of the density function. More ambitiously, such methods could potentially adapt to the dependencies between variables by constructing local quadratic approximations. Another approach is to improve sampling efficiency by suppressing random walks. This can be done for univariate slice sampling by overrelaxation, and for multivariate slice sampling by reflection from the edges of the slice." @default.
- W32980360 created "2016-06-24" @default.
- W32980360 creator A5037434634 @default.
- W32980360 date "2003-06-01" @default.
- W32980360 modified "2023-10-11" @default.
- W32980360 title "Slice sampling" @default.
- W32980360 cites W1489119587 @default.
- W32980360 cites W1513873506 @default.
- W32980360 cites W1517555081 @default.
- W32980360 cites W1567512734 @default.
- W32980360 cites W1752868210 @default.
- W32980360 cites W18553681 @default.
- W32980360 cites W1902027874 @default.
- W32980360 cites W1966017656 @default.
- W32980360 cites W1977671418 @default.
- W32980360 cites W1985715247 @default.
- W32980360 cites W1990908957 @default.
- W32980360 cites W2005697295 @default.
- W32980360 cites W2009985525 @default.
- W32980360 cites W2013696827 @default.
- W32980360 cites W2023502716 @default.
- W32980360 cites W2029774915 @default.
- W32980360 cites W2033229837 @default.
- W32980360 cites W2033900415 @default.
- W32980360 cites W2035081607 @default.
- W32980360 cites W2038784288 @default.
- W32980360 cites W2043432627 @default.
- W32980360 cites W2046479624 @default.
- W32980360 cites W2053327409 @default.
- W32980360 cites W2056760934 @default.
- W32980360 cites W2059448777 @default.
- W32980360 cites W2066749736 @default.
- W32980360 cites W2073299436 @default.
- W32980360 cites W2084953463 @default.
- W32980360 cites W2090251478 @default.
- W32980360 cites W2106706098 @default.
- W32980360 cites W2109091716 @default.
- W32980360 cites W2114350394 @default.
- W32980360 cites W2119642783 @default.
- W32980360 cites W2121809824 @default.
- W32980360 cites W2122891730 @default.
- W32980360 cites W2128598176 @default.
- W32980360 cites W2128981260 @default.
- W32980360 cites W2138309709 @default.
- W32980360 cites W2165991407 @default.
- W32980360 cites W2204383650 @default.
- W32980360 cites W41222772 @default.
- W32980360 cites W4229675351 @default.
- W32980360 cites W4232468166 @default.
- W32980360 cites W4302434451 @default.
- W32980360 doi "https://doi.org/10.1214/aos/1056562461" @default.
- W32980360 hasPublicationYear "2003" @default.
- W32980360 type Work @default.
- W32980360 sameAs 32980360 @default.
- W32980360 citedByCount "1031" @default.
- W32980360 countsByYear W329803602012 @default.
- W32980360 countsByYear W329803602013 @default.
- W32980360 countsByYear W329803602014 @default.
- W32980360 countsByYear W329803602015 @default.
- W32980360 countsByYear W329803602016 @default.
- W32980360 countsByYear W329803602017 @default.
- W32980360 countsByYear W329803602018 @default.
- W32980360 countsByYear W329803602019 @default.
- W32980360 countsByYear W329803602020 @default.
- W32980360 countsByYear W329803602021 @default.
- W32980360 countsByYear W329803602022 @default.
- W32980360 countsByYear W329803602023 @default.
- W32980360 crossrefType "journal-article" @default.
- W32980360 hasAuthorship W32980360A5037434634 @default.
- W32980360 hasBestOaLocation W329803601 @default.
- W32980360 hasConcept C105795698 @default.
- W32980360 hasConcept C106131492 @default.
- W32980360 hasConcept C107673813 @default.
- W32980360 hasConcept C11413529 @default.
- W32980360 hasConcept C126255220 @default.
- W32980360 hasConcept C140779682 @default.
- W32980360 hasConcept C158424031 @default.
- W32980360 hasConcept C161584116 @default.
- W32980360 hasConcept C170593435 @default.
- W32980360 hasConcept C19499675 @default.
- W32980360 hasConcept C199163554 @default.
- W32980360 hasConcept C31972630 @default.
- W32980360 hasConcept C33923547 @default.
- W32980360 hasConcept C41008148 @default.
- W32980360 hasConcept C52740198 @default.
- W32980360 hasConcept C84181548 @default.
- W32980360 hasConcept C98763669 @default.
- W32980360 hasConceptScore W32980360C105795698 @default.
- W32980360 hasConceptScore W32980360C106131492 @default.
- W32980360 hasConceptScore W32980360C107673813 @default.
- W32980360 hasConceptScore W32980360C11413529 @default.
- W32980360 hasConceptScore W32980360C126255220 @default.
- W32980360 hasConceptScore W32980360C140779682 @default.
- W32980360 hasConceptScore W32980360C158424031 @default.
- W32980360 hasConceptScore W32980360C161584116 @default.
- W32980360 hasConceptScore W32980360C170593435 @default.
- W32980360 hasConceptScore W32980360C19499675 @default.
- W32980360 hasConceptScore W32980360C199163554 @default.
- W32980360 hasConceptScore W32980360C31972630 @default.
- W32980360 hasConceptScore W32980360C33923547 @default.