Matches in SemOpenAlex for { <https://semopenalex.org/work/W331397661> ?p ?o ?g. }
- W331397661 abstract "One of the main tasks for an industrial robot is to move the end-effector in a predefined path with a specified velocity and acceleration. Different applications have different requirements of the performance. For some applications it is essential that the tracking error is extremely low, whereas other applications require a time optimal tracking. Independent of the application, the controller is a crucial part of the robot system. The most common controller configuration uses only measurements of the motor angular positions and velocities, instead of the position and velocity of the end-effector. The development of new cost optimised robots have introduced unwanted flexibilities in the joints and the links. It is no longer possible to get the desired performance and robustness by only measuring the motor angular positions. This thesis investigates if it is possible to estimate the end-effector position when an accelerometer is mounted at the end-effector. The main focus is to investigate Bayesian estimation methods for state estimation, here represented by the extended Kalman filter (EKF) and the particle filter (PF). A simulation study is performed on a two degrees of freedom industrial robot model using an EKF. The study emphasises three important problems to take care of in order to get a good performance. The first one is related to model errors which in general requires better identification methods. The second problem is about tuning of the EKF, i.e., the choice of covariance matrices for the measurement and process noise. It is desirable to have an automatic tuning procedure which minimises the estimation error and is robust to initial conditions of the tuned parameters. A variant of the expectation maximisation (EM) algorithm is proposed for estimation of the process noise covariance matrix Q. The EM algorithm iteratively estimates the unobserved state sequence and the matrix Q based on the observations of the process, where the extended Kalman smoother (EKS) is the instrument to find the unobserved state sequence. The third problem considers the orientation and position of the accelerometer mounted to the end-effector. A novel method to find the orientation and position of the triaxial accelerometer is proposed and evaluated on experimental data. The method consists of two consecutive steps, where the first is to estimate the orientation of the sensor from static experiments. In the second step the sensor position relative to the robot base is identified using sensor readings when the sensor moves in a circular path and where the sensor orientation is kept constant in a path fixed coordinate system. Finally, experimental evaluations are performed on an ABB IRB4600 robot. Different observers using the EKF, EKS and PF with different estimation models are proposed. The estimated paths are compared to the true path measured by a laser tracking system. There is no significant difference in performance between the six observers. Instead, execution time, model complexities and implementation issues have to be considered when choosing the method." @default.
- W331397661 created "2016-06-24" @default.
- W331397661 creator A5087652029 @default.
- W331397661 date "2011-01-01" @default.
- W331397661 modified "2023-09-28" @default.
- W331397661 title "On Sensor Fusion Applied to Industrial Manipulators" @default.
- W331397661 cites W1492453364 @default.
- W331397661 cites W1500045249 @default.
- W331397661 cites W1510486166 @default.
- W331397661 cites W1518304777 @default.
- W331397661 cites W1532865356 @default.
- W331397661 cites W1548345288 @default.
- W331397661 cites W170647656 @default.
- W331397661 cites W1726588913 @default.
- W331397661 cites W2099173760 @default.
- W331397661 cites W2103175531 @default.
- W331397661 cites W2103461646 @default.
- W331397661 cites W2103511609 @default.
- W331397661 cites W2108636068 @default.
- W331397661 cites W2130940874 @default.
- W331397661 cites W2133467633 @default.
- W331397661 cites W2139077125 @default.
- W331397661 cites W2146702156 @default.
- W331397661 cites W2161024951 @default.
- W331397661 cites W2163045070 @default.
- W331397661 cites W2505474963 @default.
- W331397661 cites W252649519 @default.
- W331397661 cites W3001520436 @default.
- W331397661 cites W331964014 @default.
- W331397661 cites W405144601 @default.
- W331397661 cites W52303383 @default.
- W331397661 cites W579585449 @default.
- W331397661 cites W599199831 @default.
- W331397661 cites W613610909 @default.
- W331397661 cites W620000800 @default.
- W331397661 cites W621513727 @default.
- W331397661 cites W637947919 @default.
- W331397661 cites W650851349 @default.
- W331397661 hasPublicationYear "2011" @default.
- W331397661 type Work @default.
- W331397661 sameAs 331397661 @default.
- W331397661 citedByCount "11" @default.
- W331397661 countsByYear W3313976612012 @default.
- W331397661 countsByYear W3313976612013 @default.
- W331397661 countsByYear W3313976612014 @default.
- W331397661 countsByYear W3313976612018 @default.
- W331397661 countsByYear W3313976612019 @default.
- W331397661 crossrefType "journal-article" @default.
- W331397661 hasAuthorship W331397661A5087652029 @default.
- W331397661 hasConcept C104317684 @default.
- W331397661 hasConcept C105795698 @default.
- W331397661 hasConcept C127413603 @default.
- W331397661 hasConcept C133731056 @default.
- W331397661 hasConcept C154945302 @default.
- W331397661 hasConcept C157286648 @default.
- W331397661 hasConcept C178650346 @default.
- W331397661 hasConcept C185592680 @default.
- W331397661 hasConcept C206833254 @default.
- W331397661 hasConcept C2775924081 @default.
- W331397661 hasConcept C2776126113 @default.
- W331397661 hasConcept C33923547 @default.
- W331397661 hasConcept C33954974 @default.
- W331397661 hasConcept C41008148 @default.
- W331397661 hasConcept C47446073 @default.
- W331397661 hasConcept C55493867 @default.
- W331397661 hasConcept C63479239 @default.
- W331397661 hasConcept C8652668 @default.
- W331397661 hasConcept C90509273 @default.
- W331397661 hasConceptScore W331397661C104317684 @default.
- W331397661 hasConceptScore W331397661C105795698 @default.
- W331397661 hasConceptScore W331397661C127413603 @default.
- W331397661 hasConceptScore W331397661C133731056 @default.
- W331397661 hasConceptScore W331397661C154945302 @default.
- W331397661 hasConceptScore W331397661C157286648 @default.
- W331397661 hasConceptScore W331397661C178650346 @default.
- W331397661 hasConceptScore W331397661C185592680 @default.
- W331397661 hasConceptScore W331397661C206833254 @default.
- W331397661 hasConceptScore W331397661C2775924081 @default.
- W331397661 hasConceptScore W331397661C2776126113 @default.
- W331397661 hasConceptScore W331397661C33923547 @default.
- W331397661 hasConceptScore W331397661C33954974 @default.
- W331397661 hasConceptScore W331397661C41008148 @default.
- W331397661 hasConceptScore W331397661C47446073 @default.
- W331397661 hasConceptScore W331397661C55493867 @default.
- W331397661 hasConceptScore W331397661C63479239 @default.
- W331397661 hasConceptScore W331397661C8652668 @default.
- W331397661 hasConceptScore W331397661C90509273 @default.
- W331397661 hasLocation W3313976611 @default.
- W331397661 hasOpenAccess W331397661 @default.
- W331397661 hasPrimaryLocation W3313976611 @default.
- W331397661 hasRelatedWork W1480508543 @default.
- W331397661 hasRelatedWork W1492453364 @default.
- W331397661 hasRelatedWork W1500045249 @default.
- W331397661 hasRelatedWork W1510486166 @default.
- W331397661 hasRelatedWork W1518304777 @default.
- W331397661 hasRelatedWork W1532865356 @default.
- W331397661 hasRelatedWork W1726588913 @default.
- W331397661 hasRelatedWork W2099173760 @default.
- W331397661 hasRelatedWork W2139077125 @default.
- W331397661 hasRelatedWork W252649519 @default.