Matches in SemOpenAlex for { <https://semopenalex.org/work/W331471609> ?p ?o ?g. }
Showing items 1 to 62 of
62
with 100 items per page.
- W331471609 startingPage "237" @default.
- W331471609 abstract "Most studies of physiological measures of precognitive anticipation have been exploratory, and the time has come to apply methods for convincing confirmatory research. Mossbridge, Tressoldi, and Utts (2012) recently pointed out the need for the diverse experimental procedures and analysis methods to converge to standard practices that can be directly replicated. This article focuses on certain methodological issues that require particular attention for precognitive anticipation experiments. The discussion here does not cover all aspects of confirmatory experiments. Important methodological practices that should be implemented for any confirmatory experiment but are not discussed here include power analysis, study registration, documented software validation, and data sharing (Kennedy, 2013a, 2013b, 2013c; Koestler Parapsychology Unit, 2012). The present article focuses on issues that are more specifically associated with precognitive anticipation experiments. The basic design of a precognitive anticipation experiment is that a participant receives randomly selected stimuli while certain physiological data are collected prior to the stimuli. The physiological data are analyzed to see if the person unconsciously anticipates the specific stimulus that occurs. Various stimuli can be used, such as the display of either an arousing image or a calming image, or either a signal that requires a fast action by the participant or a signal that requires no action. A wide range of physiological measures can indicate anticipation in situations like these, including skin conductance, electrical activity in the brain, pupil dilation, muscle activity, and heart rate. The term presentiment has often been used for experiments using emotional or arousing stimuli, but that is a subset of precognitive anticipation research. Three basic strategies have been used to analyze precognitive anticipation experiments. One analysis strategy is to predict new events. An initial set of data is analyzed to develop criteria for using the physiological measures to predict the random events. The methods for developing criteria for making predictions are often called classification or discriminant analysis methods. These methods may be simple such as using a median value, or may involve complex multivariate techniques. The initial process of developing criteria is often called the learning or training step. The criteria are then applied to physiological measures on new trials to predict the random events for those trials. Statistical significance for precognitive anticipation can be evaluated with a simple binomial test (or normal approximation) on the proportion of correct predictions for the new trials. Another analysis strategy is to classify the learning data. Predictive criteria are developed as described above, but statistical significance is evaluated by applying the criteria to the data used to develop the criteria rather than to new trials. This strategy must attempt to adjust for the extent to which the process of developing the criteria incorporates random fluctuations and other properties of the learning data that are not applicable for future random events. These adjustments generally are not straightforward, particularly when multivariate methods are involved. The most convincing way to evaluate the validity of the predictive criteria is to apply the criteria to new trials as described above. Attempts to eliminate that step can be expected to be controversial. The third analysis strategy is to evaluate the differences in the physiological measures. Statistical significance is based on testing the difference between the average physiological measures for the different types of stimuli in the study. This strategy uses the physiological measures (rather than the random events) as the dependent variable. As discussed in the next section, this strategy is prone to false positive biases because the physiological data can violate the assumptions for standard statistical analysis as a dependent variable. …" @default.
- W331471609 created "2016-06-24" @default.
- W331471609 creator A5077910701 @default.
- W331471609 date "2013-09-22" @default.
- W331471609 modified "2023-09-23" @default.
- W331471609 title "Methodology for Confirmatory Experiments on Physiological Measures of Precognitive anticipation/Metodologia Para Experimentos Confirmatorios Sobre Medidas Fisiologicas De Anticipacion precognitiva/Methodologie Pour Les Experimentations Confirmatoires Sur Les Mesures Physiologiques D'anticipation precognitive/Eine Methodologie Fur Bestatigungsexperimente Von Physiologischen Messungen Zur Prakognitiven Antizipation" @default.
- W331471609 hasPublicationYear "2013" @default.
- W331471609 type Work @default.
- W331471609 sameAs 331471609 @default.
- W331471609 citedByCount "0" @default.
- W331471609 crossrefType "journal-article" @default.
- W331471609 hasAuthorship W331471609A5077910701 @default.
- W331471609 hasConcept C142724271 @default.
- W331471609 hasConcept C15491014 @default.
- W331471609 hasConcept C154945302 @default.
- W331471609 hasConcept C15744967 @default.
- W331471609 hasConcept C176777502 @default.
- W331471609 hasConcept C180747234 @default.
- W331471609 hasConcept C204787440 @default.
- W331471609 hasConcept C41008148 @default.
- W331471609 hasConcept C71924100 @default.
- W331471609 hasConcept C77805123 @default.
- W331471609 hasConceptScore W331471609C142724271 @default.
- W331471609 hasConceptScore W331471609C15491014 @default.
- W331471609 hasConceptScore W331471609C154945302 @default.
- W331471609 hasConceptScore W331471609C15744967 @default.
- W331471609 hasConceptScore W331471609C176777502 @default.
- W331471609 hasConceptScore W331471609C180747234 @default.
- W331471609 hasConceptScore W331471609C204787440 @default.
- W331471609 hasConceptScore W331471609C41008148 @default.
- W331471609 hasConceptScore W331471609C71924100 @default.
- W331471609 hasConceptScore W331471609C77805123 @default.
- W331471609 hasIssue "2" @default.
- W331471609 hasLocation W3314716091 @default.
- W331471609 hasOpenAccess W331471609 @default.
- W331471609 hasPrimaryLocation W3314716091 @default.
- W331471609 hasRelatedWork W1546653774 @default.
- W331471609 hasRelatedWork W1566416440 @default.
- W331471609 hasRelatedWork W1759698848 @default.
- W331471609 hasRelatedWork W1982698786 @default.
- W331471609 hasRelatedWork W2000688897 @default.
- W331471609 hasRelatedWork W2054211846 @default.
- W331471609 hasRelatedWork W2077564664 @default.
- W331471609 hasRelatedWork W2123859098 @default.
- W331471609 hasRelatedWork W2133536558 @default.
- W331471609 hasRelatedWork W224223546 @default.
- W331471609 hasRelatedWork W2562050452 @default.
- W331471609 hasRelatedWork W2767056325 @default.
- W331471609 hasRelatedWork W2907380444 @default.
- W331471609 hasRelatedWork W2989962255 @default.
- W331471609 hasRelatedWork W299729075 @default.
- W331471609 hasRelatedWork W3115297521 @default.
- W331471609 hasRelatedWork W3167557203 @default.
- W331471609 hasRelatedWork W792034595 @default.
- W331471609 hasRelatedWork W1938674736 @default.
- W331471609 hasRelatedWork W2039752048 @default.
- W331471609 hasVolume "77" @default.
- W331471609 isParatext "false" @default.
- W331471609 isRetracted "false" @default.
- W331471609 magId "331471609" @default.
- W331471609 workType "article" @default.