Matches in SemOpenAlex for { <https://semopenalex.org/work/W333233685> ?p ?o ?g. }
- W333233685 endingPage "7056" @default.
- W333233685 startingPage "7046" @default.
- W333233685 abstract "Stock price direction prediction is an important issue in the financial world. Even small improvements in predictive performance can be very profitable. The purpose of this paper is to benchmark ensemble methods (Random Forest, AdaBoost and Kernel Factory) against single classifier models (Neural Networks, Logistic Regression, Support Vector Machines and K-Nearest Neighbor). We gathered data from 5767 publicly listed European companies and used the area under the receiver operating characteristic curve (AUC) as a performance measure. Our predictions are one year ahead. The results indicate that Random Forest is the top algorithm followed by Support Vector Machines, Kernel Factory, AdaBoost, Neural Networks, K-Nearest Neighbors and Logistic Regression. This study contributes to literature in that it is, to the best of our knowledge, the first to make such an extensive benchmark. The results clearly suggest that novel studies in the domain of stock price direction prediction should include ensembles in their sets of algorithms. Our extensive literature review evidently indicates that this is currently not the case." @default.
- W333233685 created "2016-06-24" @default.
- W333233685 creator A5022969963 @default.
- W333233685 creator A5026810106 @default.
- W333233685 creator A5030444120 @default.
- W333233685 creator A5041285601 @default.
- W333233685 date "2015-11-01" @default.
- W333233685 modified "2023-10-18" @default.
- W333233685 title "Evaluating multiple classifiers for stock price direction prediction" @default.
- W333233685 cites W1520812622 @default.
- W333233685 cites W1534477342 @default.
- W333233685 cites W1678356000 @default.
- W333233685 cites W1799405941 @default.
- W333233685 cites W1965805826 @default.
- W333233685 cites W1966093719 @default.
- W333233685 cites W1966701961 @default.
- W333233685 cites W1969793832 @default.
- W333233685 cites W1980223370 @default.
- W333233685 cites W1980836123 @default.
- W333233685 cites W1981976602 @default.
- W333233685 cites W1986078433 @default.
- W333233685 cites W1986145156 @default.
- W333233685 cites W2000920768 @default.
- W333233685 cites W2002934198 @default.
- W333233685 cites W2003815806 @default.
- W333233685 cites W2012079387 @default.
- W333233685 cites W2012126808 @default.
- W333233685 cites W2016944307 @default.
- W333233685 cites W2021693371 @default.
- W333233685 cites W2024046085 @default.
- W333233685 cites W2025053102 @default.
- W333233685 cites W2025623395 @default.
- W333233685 cites W2032170121 @default.
- W333233685 cites W2032550340 @default.
- W333233685 cites W2033626294 @default.
- W333233685 cites W2036679573 @default.
- W333233685 cites W2038227460 @default.
- W333233685 cites W2038844583 @default.
- W333233685 cites W2051455168 @default.
- W333233685 cites W2055503689 @default.
- W333233685 cites W2058001440 @default.
- W333233685 cites W2060298585 @default.
- W333233685 cites W2067594023 @default.
- W333233685 cites W2068805783 @default.
- W333233685 cites W2070493638 @default.
- W333233685 cites W2071110145 @default.
- W333233685 cites W2072664345 @default.
- W333233685 cites W2077365830 @default.
- W333233685 cites W2080265874 @default.
- W333233685 cites W2080614264 @default.
- W333233685 cites W2084876223 @default.
- W333233685 cites W2085692898 @default.
- W333233685 cites W2085708398 @default.
- W333233685 cites W2091621250 @default.
- W333233685 cites W2092495914 @default.
- W333233685 cites W2092885781 @default.
- W333233685 cites W2103803247 @default.
- W333233685 cites W2110410904 @default.
- W333233685 cites W2113822305 @default.
- W333233685 cites W2131773668 @default.
- W333233685 cites W2132286633 @default.
- W333233685 cites W2138293190 @default.
- W333233685 cites W2158663270 @default.
- W333233685 cites W2164438627 @default.
- W333233685 cites W2165558283 @default.
- W333233685 cites W2171567624 @default.
- W333233685 cites W2236744271 @default.
- W333233685 cites W2911964244 @default.
- W333233685 cites W3104887532 @default.
- W333233685 cites W3121904436 @default.
- W333233685 cites W3124185353 @default.
- W333233685 cites W3124979809 @default.
- W333233685 cites W4241658115 @default.
- W333233685 cites W4241727697 @default.
- W333233685 cites W4294541781 @default.
- W333233685 doi "https://doi.org/10.1016/j.eswa.2015.05.013" @default.
- W333233685 hasPublicationYear "2015" @default.
- W333233685 type Work @default.
- W333233685 sameAs 333233685 @default.
- W333233685 citedByCount "328" @default.
- W333233685 countsByYear W3332336852015 @default.
- W333233685 countsByYear W3332336852016 @default.
- W333233685 countsByYear W3332336852017 @default.
- W333233685 countsByYear W3332336852018 @default.
- W333233685 countsByYear W3332336852019 @default.
- W333233685 countsByYear W3332336852020 @default.
- W333233685 countsByYear W3332336852021 @default.
- W333233685 countsByYear W3332336852022 @default.
- W333233685 countsByYear W3332336852023 @default.
- W333233685 crossrefType "journal-article" @default.
- W333233685 hasAuthorship W333233685A5022969963 @default.
- W333233685 hasAuthorship W333233685A5026810106 @default.
- W333233685 hasAuthorship W333233685A5030444120 @default.
- W333233685 hasAuthorship W333233685A5041285601 @default.
- W333233685 hasConcept C119857082 @default.
- W333233685 hasConcept C12267149 @default.
- W333233685 hasConcept C124101348 @default.
- W333233685 hasConcept C127413603 @default.