Matches in SemOpenAlex for { <https://semopenalex.org/work/W333294102> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W333294102 abstract "An artificial neural network for the forecasting of concentrations of fine particulate matter in the atmosphere was designed. The data set analyzed corresponds to three years of pm2.5 time series (particulate matter in suspension with aerodynamic diameter less than 2,5 microns), measured in a station that belongs to Santiago’s monitoring network (Red MACAM) and is located near downtown. We consider measurements of concentrations between May and August for years between 1994 and 1996. In order to find the optimal time spacing between data and the number of values into the past necessary to forecast a future value, two standard tests were performed, Average Mutual Information (AMI) and False Nearest Neighbours (FNN). The results of these tests suggest that the most convenient choice for modelling was to use 4 data with 6 hour spacing on a given day as input in order to forecast the value at 6 AM on the following day. Once the number and type of input and output variables are fixed, we implemented a forecasting model based on the neural network technique. We used a feedforward multilayer neural network and we trained it with the backpropagation algorithm. We tested networks with none, one and two hidden layers. The best model was one with one hidden layer, in contradiction with a previous study that found that minimum error was obtained with a net without hidden layer. Forecasts with the neural network are more accurate than those produced with a persistence model (the value six hours ahead is the same as the actual value)." @default.
- W333294102 created "2016-06-24" @default.
- W333294102 creator A5015435020 @default.
- W333294102 creator A5048439254 @default.
- W333294102 date "2006-01-01" @default.
- W333294102 modified "2023-09-27" @default.
- W333294102 title "ESTUDIO DE SERIES TEMPORALES DE CONTAMINACIÓN AMBIENTAL MEDIANTE TÉCNICAS DE REDES NEURONALES ARTIFICIALES TIME SERIES ANALYSIS OF ATMOSPHERE POLLUTION DATA USING ARTIFICIAL NEURAL NETWORKS TECHNIQUES" @default.
- W333294102 cites W1973824420 @default.
- W333294102 cites W2016199013 @default.
- W333294102 cites W2040704490 @default.
- W333294102 cites W2067186191 @default.
- W333294102 cites W2076230528 @default.
- W333294102 cites W2092554905 @default.
- W333294102 cites W2138536648 @default.
- W333294102 hasPublicationYear "2006" @default.
- W333294102 type Work @default.
- W333294102 sameAs 333294102 @default.
- W333294102 citedByCount "1" @default.
- W333294102 countsByYear W3332941022014 @default.
- W333294102 crossrefType "journal-article" @default.
- W333294102 hasAuthorship W333294102A5015435020 @default.
- W333294102 hasAuthorship W333294102A5048439254 @default.
- W333294102 hasConcept C105795698 @default.
- W333294102 hasConcept C11413529 @default.
- W333294102 hasConcept C143724316 @default.
- W333294102 hasConcept C151406439 @default.
- W333294102 hasConcept C151730666 @default.
- W333294102 hasConcept C153294291 @default.
- W333294102 hasConcept C154945302 @default.
- W333294102 hasConcept C155032097 @default.
- W333294102 hasConcept C205649164 @default.
- W333294102 hasConcept C33923547 @default.
- W333294102 hasConcept C41008148 @default.
- W333294102 hasConcept C47702885 @default.
- W333294102 hasConcept C50644808 @default.
- W333294102 hasConcept C58489278 @default.
- W333294102 hasConcept C65440619 @default.
- W333294102 hasConcept C86803240 @default.
- W333294102 hasConceptScore W333294102C105795698 @default.
- W333294102 hasConceptScore W333294102C11413529 @default.
- W333294102 hasConceptScore W333294102C143724316 @default.
- W333294102 hasConceptScore W333294102C151406439 @default.
- W333294102 hasConceptScore W333294102C151730666 @default.
- W333294102 hasConceptScore W333294102C153294291 @default.
- W333294102 hasConceptScore W333294102C154945302 @default.
- W333294102 hasConceptScore W333294102C155032097 @default.
- W333294102 hasConceptScore W333294102C205649164 @default.
- W333294102 hasConceptScore W333294102C33923547 @default.
- W333294102 hasConceptScore W333294102C41008148 @default.
- W333294102 hasConceptScore W333294102C47702885 @default.
- W333294102 hasConceptScore W333294102C50644808 @default.
- W333294102 hasConceptScore W333294102C58489278 @default.
- W333294102 hasConceptScore W333294102C65440619 @default.
- W333294102 hasConceptScore W333294102C86803240 @default.
- W333294102 hasLocation W3332941021 @default.
- W333294102 hasOpenAccess W333294102 @default.
- W333294102 hasPrimaryLocation W3332941021 @default.
- W333294102 isParatext "false" @default.
- W333294102 isRetracted "false" @default.
- W333294102 magId "333294102" @default.
- W333294102 workType "article" @default.