Matches in SemOpenAlex for { <https://semopenalex.org/work/W34291210> ?p ?o ?g. }
Showing items 1 to 47 of
47
with 100 items per page.
- W34291210 abstract "We study triangulations of spaces of constant negative curvature -1 from both theoretical and practical points of view. This is originally motivated by applications in various fields such as geometry processing and neuro mathematics. We first consider Delaunay complexes and Voronoi diagrams in the Poincare ball, a conformal model of the hyperbolic space, in any dimension. We use the framework of the space of spheres to give a detailed description of algorithms. We also study algebraic and arithmetic issues, observing that only rational computations are needed. All proofs are based on geometric reasoning, they do not resort to any use of the analytic formula of the hyperbolic distance. We present a complete, exact, and efficient implementation of the Delaunay complex and Voronoi diagram in the 2D hyperbolic space. The implementation is developed for future integration into the CGAL library to make it available to a broad public. Then we study the problem of computing Delaunay triangulations of closed hyperbolic surfaces. We define a triangulation as a simplicial complex, so that the general incremental algorithm for Euclidean Delaunay triangulations can be adapted. The key idea of the approach is to show the existence of a finite-sheeted covering space for which the fibers always define a Delaunay triangulation. We prove a sufficient condition on the length of the shortest non-contractible loops of the covering space. For the specific case of the Bolza surface, we propose a method to actually construct such a covering space, by studying normal subgroups of the Fuchsian group defining the surface. Implementation aspects are considered." @default.
- W34291210 created "2016-06-24" @default.
- W34291210 creator A5067203759 @default.
- W34291210 date "2013-12-09" @default.
- W34291210 modified "2023-09-28" @default.
- W34291210 title "Triangulations de Delaunay dans des espaces de courbure constante négative" @default.
- W34291210 hasPublicationYear "2013" @default.
- W34291210 type Work @default.
- W34291210 sameAs 34291210 @default.
- W34291210 citedByCount "0" @default.
- W34291210 crossrefType "dissertation" @default.
- W34291210 hasAuthorship W34291210A5067203759 @default.
- W34291210 hasConcept C121198538 @default.
- W34291210 hasConcept C128321387 @default.
- W34291210 hasConcept C136119220 @default.
- W34291210 hasConcept C178609930 @default.
- W34291210 hasConcept C183342303 @default.
- W34291210 hasConcept C202444582 @default.
- W34291210 hasConcept C206352148 @default.
- W34291210 hasConcept C24881265 @default.
- W34291210 hasConcept C2524010 @default.
- W34291210 hasConcept C33923547 @default.
- W34291210 hasConcept C68010082 @default.
- W34291210 hasConcept C68363185 @default.
- W34291210 hasConcept C83677898 @default.
- W34291210 hasConcept C99886907 @default.
- W34291210 hasConceptScore W34291210C121198538 @default.
- W34291210 hasConceptScore W34291210C128321387 @default.
- W34291210 hasConceptScore W34291210C136119220 @default.
- W34291210 hasConceptScore W34291210C178609930 @default.
- W34291210 hasConceptScore W34291210C183342303 @default.
- W34291210 hasConceptScore W34291210C202444582 @default.
- W34291210 hasConceptScore W34291210C206352148 @default.
- W34291210 hasConceptScore W34291210C24881265 @default.
- W34291210 hasConceptScore W34291210C2524010 @default.
- W34291210 hasConceptScore W34291210C33923547 @default.
- W34291210 hasConceptScore W34291210C68010082 @default.
- W34291210 hasConceptScore W34291210C68363185 @default.
- W34291210 hasConceptScore W34291210C83677898 @default.
- W34291210 hasConceptScore W34291210C99886907 @default.
- W34291210 hasLocation W342912101 @default.
- W34291210 hasOpenAccess W34291210 @default.
- W34291210 hasPrimaryLocation W342912101 @default.
- W34291210 isParatext "false" @default.
- W34291210 isRetracted "false" @default.
- W34291210 magId "34291210" @default.
- W34291210 workType "dissertation" @default.