Matches in SemOpenAlex for { <https://semopenalex.org/work/W343552405> ?p ?o ?g. }
- W343552405 endingPage "189" @default.
- W343552405 startingPage "173" @default.
- W343552405 abstract "A description of the sequence of interspike intervals and of the subsequent firing times for single neurons is performed by means of an instantaneous return pro- cess in the presence of refractoriness. Every interspike interval consists of an absolute refractory period of fixed duration followed by a period of relative refractoriness whose duration is described by the first-passage time of the modeling diffusion process through a generally time-dependent threshold. In the cases of Wiener and Ornstein-Uhlenbeck processes, the interspike probability density functions and some of its statistical fea- tures are explicitly obtained for special monotonically non-increasing thresholds. 1 Introduction Stochastic models for neuronal firing in the presence of refractoriness have been the object of various investigations. The first attempt to study the effect of refractoriness in a point process is made in (22) and in (25) in which the authors consider the role played by the dead time in determining the distribution of the output when the input obeys a given distribution. Successively, an instantaneous return process, constructed on a diffusion, has been considered aiming to a quantitative description of neuron's membrane potential behavior. Within such a context, the presence of refractoriness has been included in two different ways. The first way assumes that the firing threshold acts as an elastic barrier that is partially transparent, i.e. such that its behavior is intermediate between total absorption and total reflection (cf. (3), (4), (5), (20)). Alternatively, the return process paradigm for the description of the time course of the membrane potential is analyzed by assuming that the neuronal refractoriness period is a random variable with a pre-assigned probability density (cf. (1), (10), (11), (15), (23)). Recently, in (2) and (16), the Wiener neuronal model in the presence of constant and of exponentially distributed refractoriness has been considered, and expressions for output distributions and for interspike interval densities have been obtained in closed form. Customarily, the firing threshold has been viewed in the literature as a constant which may not be appropriate, especially for rapidly firing cells (cf. (7), (13), (14), (26)). Indeed, when a neuron releases an action potential, it becomes temporarily incapable of responding to further input signals. In fact, for a period of time, of the order of one or two milliseconds, the neuron is unable to respond to any stimuli (absolute refractory period). After that, for several successive milliseconds its sensitivity to the incoming stimuli is normally reduced, in some cases increasing successively. This type of after-firing behavior (after potentials) may last up to about 100 msec. In the present context we focus our attention on a constant absolute refractory period followed by a period of relative refractoriness that we model as a random variable. Hence, after a spike release, we assume that the neuron is unable to fire again during the absolute refractory period, while the firing threshold is assumed to decrease progressively as the inhibitory effect of the previous spike fades away." @default.
- W343552405 created "2016-06-24" @default.
- W343552405 creator A5031967566 @default.
- W343552405 creator A5059057630 @default.
- W343552405 creator A5070863674 @default.
- W343552405 creator A5089131392 @default.
- W343552405 date "2008-03-01" @default.
- W343552405 modified "2023-09-23" @default.
- W343552405 title "MODELING REFRACTORINESS FOR STOCHASTICALLY DRIVEN SINGLE NEURONS" @default.
- W343552405 cites W1521790315 @default.
- W343552405 cites W1527816829 @default.
- W343552405 cites W1537927935 @default.
- W343552405 cites W1550525007 @default.
- W343552405 cites W196564771 @default.
- W343552405 cites W1976345925 @default.
- W343552405 cites W1987703734 @default.
- W343552405 cites W1990931170 @default.
- W343552405 cites W1991160357 @default.
- W343552405 cites W2090654877 @default.
- W343552405 cites W2103891020 @default.
- W343552405 cites W2107363162 @default.
- W343552405 cites W2112236588 @default.
- W343552405 cites W21173183 @default.
- W343552405 cites W2322685830 @default.
- W343552405 cites W2325583317 @default.
- W343552405 cites W2330962475 @default.
- W343552405 cites W2464116163 @default.
- W343552405 cites W2790042937 @default.
- W343552405 cites W2904211149 @default.
- W343552405 cites W295626692 @default.
- W343552405 cites W310937301 @default.
- W343552405 cites W3113221786 @default.
- W343552405 cites W3119264854 @default.
- W343552405 cites W2322019262 @default.
- W343552405 doi "https://doi.org/10.32219/isms.67.2_173" @default.
- W343552405 hasPublicationYear "2008" @default.
- W343552405 type Work @default.
- W343552405 sameAs 343552405 @default.
- W343552405 citedByCount "2" @default.
- W343552405 countsByYear W3435524052020 @default.
- W343552405 crossrefType "journal-article" @default.
- W343552405 hasAuthorship W343552405A5031967566 @default.
- W343552405 hasAuthorship W343552405A5059057630 @default.
- W343552405 hasAuthorship W343552405A5070863674 @default.
- W343552405 hasAuthorship W343552405A5089131392 @default.
- W343552405 hasConcept C105795698 @default.
- W343552405 hasConcept C114614502 @default.
- W343552405 hasConcept C121332964 @default.
- W343552405 hasConcept C121864883 @default.
- W343552405 hasConcept C151730666 @default.
- W343552405 hasConcept C164705383 @default.
- W343552405 hasConcept C186659197 @default.
- W343552405 hasConcept C2778067643 @default.
- W343552405 hasConcept C2779343474 @default.
- W343552405 hasConcept C33923547 @default.
- W343552405 hasConcept C70616116 @default.
- W343552405 hasConcept C71924100 @default.
- W343552405 hasConcept C8272713 @default.
- W343552405 hasConcept C86803240 @default.
- W343552405 hasConceptScore W343552405C105795698 @default.
- W343552405 hasConceptScore W343552405C114614502 @default.
- W343552405 hasConceptScore W343552405C121332964 @default.
- W343552405 hasConceptScore W343552405C121864883 @default.
- W343552405 hasConceptScore W343552405C151730666 @default.
- W343552405 hasConceptScore W343552405C164705383 @default.
- W343552405 hasConceptScore W343552405C186659197 @default.
- W343552405 hasConceptScore W343552405C2778067643 @default.
- W343552405 hasConceptScore W343552405C2779343474 @default.
- W343552405 hasConceptScore W343552405C33923547 @default.
- W343552405 hasConceptScore W343552405C70616116 @default.
- W343552405 hasConceptScore W343552405C71924100 @default.
- W343552405 hasConceptScore W343552405C8272713 @default.
- W343552405 hasConceptScore W343552405C86803240 @default.
- W343552405 hasIssue "2" @default.
- W343552405 hasLocation W3435524051 @default.
- W343552405 hasOpenAccess W343552405 @default.
- W343552405 hasPrimaryLocation W3435524051 @default.
- W343552405 hasRelatedWork W1666646049 @default.
- W343552405 hasRelatedWork W1972797102 @default.
- W343552405 hasRelatedWork W1988193604 @default.
- W343552405 hasRelatedWork W1992428821 @default.
- W343552405 hasRelatedWork W1997185150 @default.
- W343552405 hasRelatedWork W2008725939 @default.
- W343552405 hasRelatedWork W2017455599 @default.
- W343552405 hasRelatedWork W2033504968 @default.
- W343552405 hasRelatedWork W2043683314 @default.
- W343552405 hasRelatedWork W2048616236 @default.
- W343552405 hasRelatedWork W2050180015 @default.
- W343552405 hasRelatedWork W2075036986 @default.
- W343552405 hasRelatedWork W2098208446 @default.
- W343552405 hasRelatedWork W2110316244 @default.
- W343552405 hasRelatedWork W2145460573 @default.
- W343552405 hasRelatedWork W2150435983 @default.
- W343552405 hasRelatedWork W2152661514 @default.
- W343552405 hasRelatedWork W2362329106 @default.
- W343552405 hasRelatedWork W2406278917 @default.
- W343552405 hasRelatedWork W2122729545 @default.
- W343552405 hasVolume "67" @default.