Matches in SemOpenAlex for { <https://semopenalex.org/work/W343790030> ?p ?o ?g. }
- W343790030 endingPage "124" @default.
- W343790030 startingPage "114" @default.
- W343790030 abstract "Coupled 187Os/188Os and highly siderophile element (HSE: Os, Ir, Ru, Pt, Pd, Re) abundance data are reported for Apollo 12 (12005, 12009, 12019, 12022, 12038, 12039, 12040), Apollo 15 (15555) and Apollo 17 (70135) mare basalts, along with mare basalt meteorites La Paz icefield (LAP) 04841 and Miller Range (MIL) 05035. These mare basalts have consistently low HSE abundances, at ∼2×10−5 to 2×10−7 the chondritic abundance. The most magnesian samples have broadly chondrite-relative HSE abundances and chondritic measured and calculated initial 187Os/188Os. The lower abundances and fractionated HSE compositions of more evolved mare basalts can be reproduced by modeling crystal–liquid fractionation using rock/melt bulk-partition coefficients of ∼2 for Os, Ir, Ru, Pt and Pd and ∼1.5 for Re. Lunar mare basalt bulk-partition coefficients are probably higher than for terrestrial melts as a result of more reducing conditions, leading to increased HSE compatibility. The chondritic-relative abundances and chondritic 187Os/188Os of the most primitive high-MgO mare basalts cannot readily be explained through regolith contamination during emplacement at the lunar surface. Mare basalt compositions are best modeled as representing ∼5–11% partial melting of metal-free sources with low Os, Ir, Ru, Pd (∼0.1 ng g−1), Pt (∼0.2 ng g−1), Re (∼0.01 ng g−1) and S (∼75 μg g−1), with sulphide-melt partitioning between 1000 and 10,000. Apollo 12 olivine-, pigeonite- and ilmenite normative mare basalts define an imprecise 187Re–187Os age of 3.0±0.9Ga with an initial 187Os/188Os of 0.107±0.010. This age is within uncertainty of 147Sm–143Nd ages for the samples. The initial Os isotopic composition of Apollo 12 samples indicates that the source of these rocks evolved with Re/Os within ∼10% of chondrite meteorites, from the time that the mantle source became a system closed to siderophile additions, to the time that the basalts erupted. Similarity in absolute HSE abundances between mare basalts from the Apollo 12, 15 and 17 sites, and from unknown regions of the Moon (La Paz mare basalts, MIL 05035), indicates relatively homogeneous and low HSE abundances within the lunar interior. Low absolute HSE abundances and chondritic Re/Os of mare basalts are consistent with a late accretion addition of ∼0.02 wt.% of the Moon's mass to the mantle, prior to the formation of the lunar crust. Late accretion must also have occurred significantly prior to cessation of lunar mantle differentiation (>4.4 Ga), to enable efficient mixing and homogenization within the mantle. Low lunar HSE abundances are consistent with proportionally 40 times more late accretion to Earth than the Moon. Disproportional late accretion to the two bodies is consistent with the small 182W excess (∼21–28 ppm) measured in lunar rocks, compared to the silicate Earth." @default.
- W343790030 created "2016-06-24" @default.
- W343790030 creator A5026241135 @default.
- W343790030 creator A5035350706 @default.
- W343790030 date "2015-08-01" @default.
- W343790030 modified "2023-10-15" @default.
- W343790030 title "Highly siderophile element depletion in the Moon" @default.
- W343790030 cites W1970261082 @default.
- W343790030 cites W1972276163 @default.
- W343790030 cites W1973572809 @default.
- W343790030 cites W1973615174 @default.
- W343790030 cites W1974074137 @default.
- W343790030 cites W1974385361 @default.
- W343790030 cites W1980306400 @default.
- W343790030 cites W1983405073 @default.
- W343790030 cites W1993461401 @default.
- W343790030 cites W1997659134 @default.
- W343790030 cites W2001595256 @default.
- W343790030 cites W2001989120 @default.
- W343790030 cites W2003180371 @default.
- W343790030 cites W2004988905 @default.
- W343790030 cites W2010056906 @default.
- W343790030 cites W2010328923 @default.
- W343790030 cites W2010659865 @default.
- W343790030 cites W2010675199 @default.
- W343790030 cites W2011176927 @default.
- W343790030 cites W2015258641 @default.
- W343790030 cites W2016162586 @default.
- W343790030 cites W2018618826 @default.
- W343790030 cites W2022505131 @default.
- W343790030 cites W2027786463 @default.
- W343790030 cites W2028045860 @default.
- W343790030 cites W2028476972 @default.
- W343790030 cites W2032085626 @default.
- W343790030 cites W2043294776 @default.
- W343790030 cites W2044377718 @default.
- W343790030 cites W2048764919 @default.
- W343790030 cites W2049125414 @default.
- W343790030 cites W2055673697 @default.
- W343790030 cites W2059750087 @default.
- W343790030 cites W2061063686 @default.
- W343790030 cites W2065614974 @default.
- W343790030 cites W2065783583 @default.
- W343790030 cites W2072375031 @default.
- W343790030 cites W2076597914 @default.
- W343790030 cites W2078492425 @default.
- W343790030 cites W2078774206 @default.
- W343790030 cites W2078896603 @default.
- W343790030 cites W2083997770 @default.
- W343790030 cites W2084898953 @default.
- W343790030 cites W2088500402 @default.
- W343790030 cites W2089927319 @default.
- W343790030 cites W2092917902 @default.
- W343790030 cites W2100089149 @default.
- W343790030 cites W2105588203 @default.
- W343790030 cites W2108156713 @default.
- W343790030 cites W2111696176 @default.
- W343790030 cites W2115782075 @default.
- W343790030 cites W2121604057 @default.
- W343790030 cites W2124281087 @default.
- W343790030 cites W2125755949 @default.
- W343790030 cites W2129143730 @default.
- W343790030 cites W2130608164 @default.
- W343790030 cites W2133153452 @default.
- W343790030 cites W2148342629 @default.
- W343790030 cites W2156939205 @default.
- W343790030 cites W2161429336 @default.
- W343790030 cites W2169420961 @default.
- W343790030 cites W2996017646 @default.
- W343790030 doi "https://doi.org/10.1016/j.epsl.2015.05.001" @default.
- W343790030 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8404368" @default.
- W343790030 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34465923" @default.
- W343790030 hasPublicationYear "2015" @default.
- W343790030 type Work @default.
- W343790030 sameAs 343790030 @default.
- W343790030 citedByCount "88" @default.
- W343790030 countsByYear W3437900302015 @default.
- W343790030 countsByYear W3437900302016 @default.
- W343790030 countsByYear W3437900302017 @default.
- W343790030 countsByYear W3437900302018 @default.
- W343790030 countsByYear W3437900302019 @default.
- W343790030 countsByYear W3437900302020 @default.
- W343790030 countsByYear W3437900302021 @default.
- W343790030 countsByYear W3437900302022 @default.
- W343790030 countsByYear W3437900302023 @default.
- W343790030 crossrefType "journal-article" @default.
- W343790030 hasAuthorship W343790030A5026241135 @default.
- W343790030 hasAuthorship W343790030A5035350706 @default.
- W343790030 hasBestOaLocation W3437900302 @default.
- W343790030 hasConcept C116862484 @default.
- W343790030 hasConcept C121332964 @default.
- W343790030 hasConcept C127313418 @default.
- W343790030 hasConcept C130635790 @default.
- W343790030 hasConcept C151730666 @default.
- W343790030 hasConcept C161509811 @default.
- W343790030 hasConcept C17409809 @default.
- W343790030 hasConcept C199289684 @default.
- W343790030 hasConcept C2776283581 @default.