Matches in SemOpenAlex for { <https://semopenalex.org/work/W34489985> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W34489985 abstract "Traditionally, the remote sensing community has relied totally on spectral knowledge to extract vegetation characteristics. However, there are other knowledge bases (KB's) that can be used to significantly improve the accuracy and robustness of inference techniques. Using AI (artificial intelligence) techniques a KB system (VEG) was developed that integrates input spectral measurements with diverse KB's. These KB's consist of data sets of directional reflectance measurements, knowledge from literature, and knowledge from experts which are combined into an intelligent and efficient system for making vegetation inferences. VEG accepts spectral data of an unknown target as input, determines the best techniques for inferring the desired vegetation characteristic(s), applies the techniques to the target data, and provides a rigorous estimate of the accuracy of the inference. VEG was developed to: infer spectral hemispherical reflectance from any combination of nadir and/or off-nadir view angles; infer percent ground cover from any combination of nadir and/or off-nadir view angles; infer unknown view angle(s) from known view angle(s) (known as view angle extension); and discriminate between user defined vegetation classes using spectral and directional reflectance relationships developed from an automated learning algorithm. The errors for these techniques were generally very good ranging between 2 to 15% (proportional root mean square). The system is designed to aid scientists in developing, testing, and applying new inference techniques using directional reflectance data." @default.
- W34489985 created "2016-06-24" @default.
- W34489985 creator A5000955779 @default.
- W34489985 creator A5036593329 @default.
- W34489985 creator A5044837842 @default.
- W34489985 creator A5060607105 @default.
- W34489985 date "1994-01-01" @default.
- W34489985 modified "2023-09-23" @default.
- W34489985 title "Application of AI techniques to infer vegetation characteristics from directional reflectance(s)" @default.
- W34489985 hasPublicationYear "1994" @default.
- W34489985 type Work @default.
- W34489985 sameAs 34489985 @default.
- W34489985 citedByCount "1" @default.
- W34489985 crossrefType "journal-article" @default.
- W34489985 hasAuthorship W34489985A5000955779 @default.
- W34489985 hasAuthorship W34489985A5036593329 @default.
- W34489985 hasAuthorship W34489985A5044837842 @default.
- W34489985 hasAuthorship W34489985A5060607105 @default.
- W34489985 hasConcept C104317684 @default.
- W34489985 hasConcept C108597893 @default.
- W34489985 hasConcept C120665830 @default.
- W34489985 hasConcept C121332964 @default.
- W34489985 hasConcept C127313418 @default.
- W34489985 hasConcept C127413603 @default.
- W34489985 hasConcept C142724271 @default.
- W34489985 hasConcept C146978453 @default.
- W34489985 hasConcept C154945302 @default.
- W34489985 hasConcept C185592680 @default.
- W34489985 hasConcept C19269812 @default.
- W34489985 hasConcept C2776133958 @default.
- W34489985 hasConcept C2776214188 @default.
- W34489985 hasConcept C41008148 @default.
- W34489985 hasConcept C55493867 @default.
- W34489985 hasConcept C62649853 @default.
- W34489985 hasConcept C63479239 @default.
- W34489985 hasConcept C71924100 @default.
- W34489985 hasConcept C88575799 @default.
- W34489985 hasConceptScore W34489985C104317684 @default.
- W34489985 hasConceptScore W34489985C108597893 @default.
- W34489985 hasConceptScore W34489985C120665830 @default.
- W34489985 hasConceptScore W34489985C121332964 @default.
- W34489985 hasConceptScore W34489985C127313418 @default.
- W34489985 hasConceptScore W34489985C127413603 @default.
- W34489985 hasConceptScore W34489985C142724271 @default.
- W34489985 hasConceptScore W34489985C146978453 @default.
- W34489985 hasConceptScore W34489985C154945302 @default.
- W34489985 hasConceptScore W34489985C185592680 @default.
- W34489985 hasConceptScore W34489985C19269812 @default.
- W34489985 hasConceptScore W34489985C2776133958 @default.
- W34489985 hasConceptScore W34489985C2776214188 @default.
- W34489985 hasConceptScore W34489985C41008148 @default.
- W34489985 hasConceptScore W34489985C55493867 @default.
- W34489985 hasConceptScore W34489985C62649853 @default.
- W34489985 hasConceptScore W34489985C63479239 @default.
- W34489985 hasConceptScore W34489985C71924100 @default.
- W34489985 hasConceptScore W34489985C88575799 @default.
- W34489985 hasLocation W344899851 @default.
- W34489985 hasOpenAccess W34489985 @default.
- W34489985 hasPrimaryLocation W344899851 @default.
- W34489985 hasRelatedWork W1586663325 @default.
- W34489985 hasRelatedWork W2002934707 @default.
- W34489985 hasRelatedWork W2110993022 @default.
- W34489985 hasRelatedWork W2126069941 @default.
- W34489985 hasRelatedWork W2134731398 @default.
- W34489985 hasRelatedWork W2327571972 @default.
- W34489985 hasRelatedWork W2418765907 @default.
- W34489985 hasRelatedWork W251192929 @default.
- W34489985 hasRelatedWork W2513795065 @default.
- W34489985 hasRelatedWork W2583131616 @default.
- W34489985 hasRelatedWork W2759112015 @default.
- W34489985 hasRelatedWork W2762386125 @default.
- W34489985 hasRelatedWork W2955286149 @default.
- W34489985 hasRelatedWork W3014753412 @default.
- W34489985 hasRelatedWork W3034043669 @default.
- W34489985 hasRelatedWork W3080416841 @default.
- W34489985 hasRelatedWork W3087927319 @default.
- W34489985 hasRelatedWork W2120156882 @default.
- W34489985 hasRelatedWork W2839515394 @default.
- W34489985 hasRelatedWork W2870402738 @default.
- W34489985 isParatext "false" @default.
- W34489985 isRetracted "false" @default.
- W34489985 magId "34489985" @default.
- W34489985 workType "article" @default.