Matches in SemOpenAlex for { <https://semopenalex.org/work/W34577118> ?p ?o ?g. }
- W34577118 endingPage "411" @default.
- W34577118 startingPage "385" @default.
- W34577118 abstract "Feature selection has become the focus of research area for a long time due to immense consumption of high-dimensional data. Originally, the purpose of feature selection is to select the minimally sized subset of features class distribution which is as close as possible to original class distribution. However in this chapter, feature selection is used to obtain the unique individual significant features which are proven very important in handwriting analysis of Writer Identification domain. Writer Identification is one of the areas in pattern recognition that have created a center of attention by many researchers to work in due to the extensive exchange of paper documents. Its principal point is in forensics and biometric application as such the writing style can be used as bio-metric features for authenticating the identity of a writer. Handwriting style is a personal to individual and it is implicitly represented by unique individual significant features that are hidden in individual’s handwriting. These unique features can be used to identify the handwritten authorship accordingly. The use of feature selection as one of the important machine learning task is often disregarded in Writer Identification domain, with only a handful of studies implemented feature selection phase. The key concern in Writer Identification is in acquiring the features reflecting the author of handwriting. Thus, it is an open question whether the extracted features are optimal or near-optimal to identify the author. Therefore, feature extraction and selection of the unique individual significant features are very important in order to identify the writer, moreover to improve the classification accuracy. It relates to invarianceness of authorship where invarianceness between features for intra-class (same writer) is lower than inter-class (different writer). Many researches have been done to develop algorithms for extracting good features that can reflect the authorship with good performance. This chapter instead focuses on identifying the unique individual significant features of word shape by using feature selection method prior the identification task. In this chapter, feature selection is explored in order to find the most unique individual significant features which are the unique features of individual’s writing. This chapter focuses on the integration of Swarm Optimized and Computationally Inexpensive Floating Selection (SOCIFS) feature selection technique into the proposed hybrid of Writer Identification framework and feature selection framework, namely Cheap Computational Cost Class-Specific Swarm Sequential Selection (C4S4). Experiments conducted to proof the validity and feasibility of the proposed framework using dataset from IAM Database by comparing the proposed framework to the existing Writer Identification framework and various feature selection techniques and frameworks yield satisfactory results. The results show the proposed framework produces the best result with 99.35% classification accuracy. The promising outcomes are opening the gate to future explorations in Writer Identification domain specifically and other domains generally." @default.
- W34577118 created "2016-06-24" @default.
- W34577118 creator A5001690160 @default.
- W34577118 creator A5006791318 @default.
- W34577118 creator A5007764071 @default.
- W34577118 creator A5007851816 @default.
- W34577118 date "2014-01-01" @default.
- W34577118 modified "2023-09-23" @default.
- W34577118 title "A New Swarm-Based Framework for Handwritten Authorship Identification in Forensic Document Analysis" @default.
- W34577118 cites W1504615530 @default.
- W34577118 cites W1553476543 @default.
- W34577118 cites W1601623348 @default.
- W34577118 cites W1678889691 @default.
- W34577118 cites W1963626514 @default.
- W34577118 cites W1975460616 @default.
- W34577118 cites W2007932135 @default.
- W34577118 cites W2014915963 @default.
- W34577118 cites W2014986661 @default.
- W34577118 cites W2017337590 @default.
- W34577118 cites W2024986448 @default.
- W34577118 cites W2026535637 @default.
- W34577118 cites W2028243078 @default.
- W34577118 cites W2030363461 @default.
- W34577118 cites W2039903200 @default.
- W34577118 cites W2045010718 @default.
- W34577118 cites W2050399271 @default.
- W34577118 cites W2053402387 @default.
- W34577118 cites W2056295869 @default.
- W34577118 cites W2070126328 @default.
- W34577118 cites W2072026441 @default.
- W34577118 cites W2072759571 @default.
- W34577118 cites W2074812954 @default.
- W34577118 cites W2080853599 @default.
- W34577118 cites W2082497819 @default.
- W34577118 cites W2095260011 @default.
- W34577118 cites W2096701529 @default.
- W34577118 cites W2103000160 @default.
- W34577118 cites W2109096974 @default.
- W34577118 cites W2117891374 @default.
- W34577118 cites W2119387367 @default.
- W34577118 cites W2119587478 @default.
- W34577118 cites W2124258777 @default.
- W34577118 cites W2136436764 @default.
- W34577118 cites W2148257937 @default.
- W34577118 cites W2152037529 @default.
- W34577118 cites W2152446828 @default.
- W34577118 cites W2152928267 @default.
- W34577118 cites W2155242133 @default.
- W34577118 cites W2155793192 @default.
- W34577118 cites W2156720673 @default.
- W34577118 cites W2159498975 @default.
- W34577118 cites W2162395775 @default.
- W34577118 cites W2163967854 @default.
- W34577118 cites W2164651097 @default.
- W34577118 cites W2539772246 @default.
- W34577118 cites W2737581186 @default.
- W34577118 cites W358380361 @default.
- W34577118 cites W4237443068 @default.
- W34577118 cites W4240861732 @default.
- W34577118 cites W4249247926 @default.
- W34577118 cites W4302154743 @default.
- W34577118 doi "https://doi.org/10.1007/978-3-319-05885-6_16" @default.
- W34577118 hasPublicationYear "2014" @default.
- W34577118 type Work @default.
- W34577118 sameAs 34577118 @default.
- W34577118 citedByCount "1" @default.
- W34577118 countsByYear W345771182022 @default.
- W34577118 crossrefType "book-chapter" @default.
- W34577118 hasAuthorship W34577118A5001690160 @default.
- W34577118 hasAuthorship W34577118A5006791318 @default.
- W34577118 hasAuthorship W34577118A5007764071 @default.
- W34577118 hasAuthorship W34577118A5007851816 @default.
- W34577118 hasConcept C116834253 @default.
- W34577118 hasConcept C154945302 @default.
- W34577118 hasConcept C204321447 @default.
- W34577118 hasConcept C23123220 @default.
- W34577118 hasConcept C41008148 @default.
- W34577118 hasConcept C59822182 @default.
- W34577118 hasConcept C86803240 @default.
- W34577118 hasConceptScore W34577118C116834253 @default.
- W34577118 hasConceptScore W34577118C154945302 @default.
- W34577118 hasConceptScore W34577118C204321447 @default.
- W34577118 hasConceptScore W34577118C23123220 @default.
- W34577118 hasConceptScore W34577118C41008148 @default.
- W34577118 hasConceptScore W34577118C59822182 @default.
- W34577118 hasConceptScore W34577118C86803240 @default.
- W34577118 hasLocation W345771181 @default.
- W34577118 hasOpenAccess W34577118 @default.
- W34577118 hasPrimaryLocation W345771181 @default.
- W34577118 hasRelatedWork W2115485936 @default.
- W34577118 hasRelatedWork W2144190808 @default.
- W34577118 hasRelatedWork W2357241418 @default.
- W34577118 hasRelatedWork W2366644548 @default.
- W34577118 hasRelatedWork W2368651715 @default.
- W34577118 hasRelatedWork W2376314740 @default.
- W34577118 hasRelatedWork W2384888906 @default.
- W34577118 hasRelatedWork W2611614995 @default.
- W34577118 hasRelatedWork W2789919619 @default.