Matches in SemOpenAlex for { <https://semopenalex.org/work/W346657789> ?p ?o ?g. }
- W346657789 abstract "We address the problem of visual knowledge adaptation by leveraging labeled patterns from source domain and a very limited number of labeled instances in target domain to learn a robust classifier for visual categorization. This paper proposes a new extreme learning machine based cross-domain network learning framework, that is called Extreme Learning Machine (ELM) based Domain Adaptation (EDA). It allows us to learn a category transformation and an ELM classifier with random projection by minimizing the l_(2,1)-norm of the network output weights and the learning error simultaneously. The unlabeled target data, as useful knowledge, is also integrated as a fidelity term to guarantee the stability during cross domain learning. It minimizes the matching error between the learned classifier and a base classifier, such that many existing classifiers can be readily incorporated as base classifiers. The network output weights cannot only be analytically determined, but also transferrable. Additionally, a manifold regularization with Laplacian graph is incorporated, such that it is beneficial to semi-supervised learning. Extensively, we also propose a model of multiple views, referred as MvEDA. Experiments on benchmark visual datasets for video event recognition and object recognition, demonstrate that our EDA methods outperform existing cross-domain learning methods." @default.
- W346657789 created "2016-06-24" @default.
- W346657789 creator A5004565086 @default.
- W346657789 creator A5082164874 @default.
- W346657789 date "2015-05-17" @default.
- W346657789 modified "2023-09-26" @default.
- W346657789 title "Robust Visual Knowledge Transfer via EDA" @default.
- W346657789 cites W1677409904 @default.
- W346657789 cites W1722318740 @default.
- W346657789 cites W1892837366 @default.
- W346657789 cites W1967972920 @default.
- W346657789 cites W1978920452 @default.
- W346657789 cites W1981658663 @default.
- W346657789 cites W1993717606 @default.
- W346657789 cites W2009668020 @default.
- W346657789 cites W2024197741 @default.
- W346657789 cites W2026131661 @default.
- W346657789 cites W2042184006 @default.
- W346657789 cites W2051065934 @default.
- W346657789 cites W2059477850 @default.
- W346657789 cites W2071207147 @default.
- W346657789 cites W2075563626 @default.
- W346657789 cites W2076363162 @default.
- W346657789 cites W2084716923 @default.
- W346657789 cites W2090923791 @default.
- W346657789 cites W2099501835 @default.
- W346657789 cites W2100916003 @default.
- W346657789 cites W2101285851 @default.
- W346657789 cites W2101674911 @default.
- W346657789 cites W2104311745 @default.
- W346657789 cites W2106890447 @default.
- W346657789 cites W2107008379 @default.
- W346657789 cites W2107250100 @default.
- W346657789 cites W2111362445 @default.
- W346657789 cites W2112019442 @default.
- W346657789 cites W2112483442 @default.
- W346657789 cites W2120149881 @default.
- W346657789 cites W2120354757 @default.
- W346657789 cites W2121971770 @default.
- W346657789 cites W2123395972 @default.
- W346657789 cites W2124372976 @default.
- W346657789 cites W2125793603 @default.
- W346657789 cites W2128053425 @default.
- W346657789 cites W2142194269 @default.
- W346657789 cites W2149466042 @default.
- W346657789 cites W2154462399 @default.
- W346657789 cites W2155541015 @default.
- W346657789 cites W2158815628 @default.
- W346657789 cites W2160039895 @default.
- W346657789 cites W2163605009 @default.
- W346657789 cites W2167328503 @default.
- W346657789 cites W2170607218 @default.
- W346657789 cites W2171837816 @default.
- W346657789 cites W2255581062 @default.
- W346657789 cites W2283717164 @default.
- W346657789 cites W2535977253 @default.
- W346657789 cites W2949280493 @default.
- W346657789 cites W2953265577 @default.
- W346657789 cites W3147875956 @default.
- W346657789 cites W46086471 @default.
- W346657789 doi "https://doi.org/10.48550/arxiv.1505.04382" @default.
- W346657789 hasPublicationYear "2015" @default.
- W346657789 type Work @default.
- W346657789 sameAs 346657789 @default.
- W346657789 citedByCount "1" @default.
- W346657789 countsByYear W3466577892016 @default.
- W346657789 crossrefType "posted-content" @default.
- W346657789 hasAuthorship W346657789A5004565086 @default.
- W346657789 hasAuthorship W346657789A5082164874 @default.
- W346657789 hasBestOaLocation W3466577891 @default.
- W346657789 hasConcept C119857082 @default.
- W346657789 hasConcept C150899416 @default.
- W346657789 hasConcept C153180895 @default.
- W346657789 hasConcept C154945302 @default.
- W346657789 hasConcept C2776434776 @default.
- W346657789 hasConcept C2780150128 @default.
- W346657789 hasConcept C2781238097 @default.
- W346657789 hasConcept C41008148 @default.
- W346657789 hasConcept C50644808 @default.
- W346657789 hasConcept C64876066 @default.
- W346657789 hasConcept C95623464 @default.
- W346657789 hasConceptScore W346657789C119857082 @default.
- W346657789 hasConceptScore W346657789C150899416 @default.
- W346657789 hasConceptScore W346657789C153180895 @default.
- W346657789 hasConceptScore W346657789C154945302 @default.
- W346657789 hasConceptScore W346657789C2776434776 @default.
- W346657789 hasConceptScore W346657789C2780150128 @default.
- W346657789 hasConceptScore W346657789C2781238097 @default.
- W346657789 hasConceptScore W346657789C41008148 @default.
- W346657789 hasConceptScore W346657789C50644808 @default.
- W346657789 hasConceptScore W346657789C64876066 @default.
- W346657789 hasConceptScore W346657789C95623464 @default.
- W346657789 hasLocation W3466577891 @default.
- W346657789 hasOpenAccess W346657789 @default.
- W346657789 hasPrimaryLocation W3466577891 @default.
- W346657789 hasRelatedWork W1439842103 @default.
- W346657789 hasRelatedWork W2517537544 @default.
- W346657789 hasRelatedWork W2739287304 @default.
- W346657789 hasRelatedWork W2741214337 @default.
- W346657789 hasRelatedWork W2807311372 @default.