Matches in SemOpenAlex for { <https://semopenalex.org/work/W34749072> ?p ?o ?g. }
- W34749072 endingPage "96" @default.
- W34749072 startingPage "3" @default.
- W34749072 abstract "There exist many fields where inverse problems appear. Some examples are: astronomy (blurred images of the Hubble satellite), econometrics (instrumental variables), financial mathematics (model calibration of the volatility), medical image processing (X-ray tomography), and quantum physics (quantum homodyne tomography). These are problems where we have indirect observations of an object (a function) that we want to reconstruct, through a linear operator A. Due to its indirect nature, solving an inverse problem is usually rather difficult. For this reason, one needs regularization methods in order to get a stable and accurate reconstruction. We present the framework of statistical inverse problems where the data are corrupted by some stochastic error. This white noise model may be discretized in the spectral domain using Singular Value Decomposition (SVD), when the operator A is compact. Several examples of inverse problems where the SVD is known are presented (circular deconvolution, heat equation, tomography). We explain some basic issues regarding nonparametric statistics applied to inverse problems. Standard regularization methods and their counterpart as estimation procedures by use of SVD are discussed (projection, Landweber, Tikhonov, . . . ). Several classical statistical approaches like minimax risk and optimal rates of convergence, are presented. This notion of optimality leads to some optimal choice of the tuning parameter. However these optimal parameters are unachievable since they depend on the unknown smoothness of the function. This leads to more recent concepts like adaptive estimation and oracle inequalities. Several data-driven selection procedures of the regularization parameter are discussed in details, among these: model selection methods, Stein’s unbiased risk estimation and the recent risk hull method." @default.
- W34749072 created "2016-06-24" @default.
- W34749072 creator A5012745614 @default.
- W34749072 date "2011-01-01" @default.
- W34749072 modified "2023-10-13" @default.
- W34749072 title "Inverse Problems in Statistics" @default.
- W34749072 cites W1505043854 @default.
- W34749072 cites W1511694993 @default.
- W34749072 cites W1511961104 @default.
- W34749072 cites W1531455566 @default.
- W34749072 cites W1550590157 @default.
- W34749072 cites W1570089119 @default.
- W34749072 cites W1596564667 @default.
- W34749072 cites W1972530969 @default.
- W34749072 cites W1973286131 @default.
- W34749072 cites W1974231626 @default.
- W34749072 cites W1977105294 @default.
- W34749072 cites W1978453919 @default.
- W34749072 cites W1980918427 @default.
- W34749072 cites W1995771589 @default.
- W34749072 cites W1996268356 @default.
- W34749072 cites W1998066475 @default.
- W34749072 cites W1998554694 @default.
- W34749072 cites W2005530382 @default.
- W34749072 cites W2005836623 @default.
- W34749072 cites W2012853725 @default.
- W34749072 cites W2013122042 @default.
- W34749072 cites W2014268383 @default.
- W34749072 cites W2016373742 @default.
- W34749072 cites W2017815792 @default.
- W34749072 cites W2026877776 @default.
- W34749072 cites W2027884397 @default.
- W34749072 cites W2032013306 @default.
- W34749072 cites W2032433149 @default.
- W34749072 cites W2033484654 @default.
- W34749072 cites W2034409624 @default.
- W34749072 cites W2034772703 @default.
- W34749072 cites W2039735602 @default.
- W34749072 cites W2043309443 @default.
- W34749072 cites W2046675234 @default.
- W34749072 cites W2053397141 @default.
- W34749072 cites W2054640142 @default.
- W34749072 cites W2056481711 @default.
- W34749072 cites W2058772015 @default.
- W34749072 cites W2060017705 @default.
- W34749072 cites W2060830457 @default.
- W34749072 cites W2063780371 @default.
- W34749072 cites W2067463233 @default.
- W34749072 cites W2067994512 @default.
- W34749072 cites W2069473596 @default.
- W34749072 cites W2071325635 @default.
- W34749072 cites W2073722079 @default.
- W34749072 cites W2078067115 @default.
- W34749072 cites W2081774672 @default.
- W34749072 cites W2082143667 @default.
- W34749072 cites W2084059738 @default.
- W34749072 cites W2086403511 @default.
- W34749072 cites W2088883866 @default.
- W34749072 cites W2090161898 @default.
- W34749072 cites W2091178361 @default.
- W34749072 cites W2091219851 @default.
- W34749072 cites W2092543127 @default.
- W34749072 cites W2093334127 @default.
- W34749072 cites W2100884899 @default.
- W34749072 cites W2106339587 @default.
- W34749072 cites W2114424556 @default.
- W34749072 cites W2117882733 @default.
- W34749072 cites W2122801813 @default.
- W34749072 cites W2140054106 @default.
- W34749072 cites W2141195893 @default.
- W34749072 cites W2142635246 @default.
- W34749072 cites W2148688551 @default.
- W34749072 cites W2149745547 @default.
- W34749072 cites W2151045852 @default.
- W34749072 cites W2158940042 @default.
- W34749072 cites W2160535159 @default.
- W34749072 cites W2164385155 @default.
- W34749072 cites W2168175751 @default.
- W34749072 cites W2207326173 @default.
- W34749072 cites W2265979617 @default.
- W34749072 cites W3000332379 @default.
- W34749072 cites W3046206984 @default.
- W34749072 cites W3099624496 @default.
- W34749072 cites W3102382226 @default.
- W34749072 cites W3123683840 @default.
- W34749072 cites W4230320149 @default.
- W34749072 cites W4235461144 @default.
- W34749072 cites W4236114384 @default.
- W34749072 cites W4237415092 @default.
- W34749072 cites W4251761138 @default.
- W34749072 cites W4255521522 @default.
- W34749072 cites W4298876635 @default.
- W34749072 cites W4299416517 @default.
- W34749072 cites W2138437229 @default.
- W34749072 doi "https://doi.org/10.1007/978-3-642-19989-9_1" @default.
- W34749072 hasPublicationYear "2011" @default.
- W34749072 type Work @default.
- W34749072 sameAs 34749072 @default.