Matches in SemOpenAlex for { <https://semopenalex.org/work/W35525900> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W35525900 abstract "Knowledge of the spatial distribution of crop types is important for many environmental and human health research studies. These studies may require crop type maps over large geographical regions for multiple years, which can be derived only from satellite images. Interpretation of Landsat images using traditional image classification techniques is not feasible for such applications because of the large number of images to be analyzed. We present a new method that automates the interpretation process resulting in a less expensive and more timely product. Software was developed to use readily available agriculture data to automatically extract spectral training statistics from target areas on the satellite images. The statistics are then used to process the remainder of the image, county by county, without intervention from the analyst. The Mahalanobis distance measurement is used in the final map to provide a measure of confidence – important for further modeling efforts. To demonstrate the feasibility of this approach, we produced a map for a single crop type (corn), using a Landsat Multispectral Scanner image in eastern Nebraska. Thirteen counties (3.35 million hectares) were classified in less than 15 minutes. The resulting map classifies the land area as either ‘highly likely to be corn’, ‘likely to be corn’, or ‘unlikely to be corn’. Ground reference data from three counties were used to assess the accuracy of our method. The resulting average classification accuracy of 89 percent is comparable to traditional methods. Introduction Knowledge of the spatial distribution of specific crop types is important for many environmental and health studies (Kellogg et al. 1992, Wood et al. 1995, Nuckols et al. 1996a,b), Gilliom and Thelin 1997. In many instances such studies need crop types maps over large geographical regions (e.g., multi-county, entire state) for multiple years in order to determine statistically significant relationships between environment and disease occurrence. For example, in a study of agricultural chemical use and occurrence of cancer, once location of crops can be determined, important parameters such as pesticide use can be estimated and incorporated into an environmental model for exposure assessment (Ward et al. 1999). Such maps covering extensive geographical regions can only be derived from satellite imagery such as Landsat TM. Landsat satellite imagery has been collected since the early 1970’s and has been successfully used to classify many different crop types (Myers 1983). However, the classification process can be very time consuming using traditional methods (i.e., supervised, unsupervised). In general, traditional methods" @default.
- W35525900 created "2016-06-24" @default.
- W35525900 creator A5021425285 @default.
- W35525900 creator A5064198706 @default.
- W35525900 creator A5076136025 @default.
- W35525900 date "2003-01-01" @default.
- W35525900 modified "2023-09-23" @default.
- W35525900 title "AUTOMATED CROP TYPE MAPPING FROM LANDSAT IMAGERY" @default.
- W35525900 cites W1589703362 @default.
- W35525900 cites W1601250951 @default.
- W35525900 cites W1997240956 @default.
- W35525900 cites W2005073772 @default.
- W35525900 cites W2008600357 @default.
- W35525900 cites W2028962595 @default.
- W35525900 cites W2062493000 @default.
- W35525900 cites W2114985787 @default.
- W35525900 cites W2628009257 @default.
- W35525900 cites W3017143921 @default.
- W35525900 cites W3022571365 @default.
- W35525900 hasPublicationYear "2003" @default.
- W35525900 type Work @default.
- W35525900 sameAs 35525900 @default.
- W35525900 citedByCount "0" @default.
- W35525900 crossrefType "journal-article" @default.
- W35525900 hasAuthorship W35525900A5021425285 @default.
- W35525900 hasAuthorship W35525900A5064198706 @default.
- W35525900 hasAuthorship W35525900A5076136025 @default.
- W35525900 hasConcept C154945302 @default.
- W35525900 hasConcept C173163844 @default.
- W35525900 hasConcept C1921717 @default.
- W35525900 hasConcept C205649164 @default.
- W35525900 hasConcept C2778102629 @default.
- W35525900 hasConcept C41008148 @default.
- W35525900 hasConcept C58640448 @default.
- W35525900 hasConcept C62649853 @default.
- W35525900 hasConceptScore W35525900C154945302 @default.
- W35525900 hasConceptScore W35525900C173163844 @default.
- W35525900 hasConceptScore W35525900C1921717 @default.
- W35525900 hasConceptScore W35525900C205649164 @default.
- W35525900 hasConceptScore W35525900C2778102629 @default.
- W35525900 hasConceptScore W35525900C41008148 @default.
- W35525900 hasConceptScore W35525900C58640448 @default.
- W35525900 hasConceptScore W35525900C62649853 @default.
- W35525900 hasLocation W355259001 @default.
- W35525900 hasOpenAccess W35525900 @default.
- W35525900 hasPrimaryLocation W355259001 @default.
- W35525900 hasRelatedWork W1536206576 @default.
- W35525900 hasRelatedWork W154333780 @default.
- W35525900 hasRelatedWork W182452440 @default.
- W35525900 hasRelatedWork W1986552794 @default.
- W35525900 hasRelatedWork W2016502309 @default.
- W35525900 hasRelatedWork W2021688848 @default.
- W35525900 hasRelatedWork W2077502722 @default.
- W35525900 hasRelatedWork W2087050005 @default.
- W35525900 hasRelatedWork W2105345872 @default.
- W35525900 hasRelatedWork W2140273551 @default.
- W35525900 hasRelatedWork W2146313334 @default.
- W35525900 hasRelatedWork W2154548435 @default.
- W35525900 hasRelatedWork W2170857288 @default.
- W35525900 hasRelatedWork W2252928335 @default.
- W35525900 hasRelatedWork W302701765 @default.
- W35525900 hasRelatedWork W3035263520 @default.
- W35525900 hasRelatedWork W313370498 @default.
- W35525900 hasRelatedWork W3180586819 @default.
- W35525900 hasRelatedWork W323022511 @default.
- W35525900 hasRelatedWork W3108625503 @default.
- W35525900 isParatext "false" @default.
- W35525900 isRetracted "false" @default.
- W35525900 magId "35525900" @default.
- W35525900 workType "article" @default.