Matches in SemOpenAlex for { <https://semopenalex.org/work/W35640847> ?p ?o ?g. }
- W35640847 abstract "In this thesis, we investigate thick subcategories for stable categories of certain Frobenius categories and for derived categories of hereditary abelian categories. Both types of categories arise in the representation theory of finite-dimensional algebras. There is a close relation between such stable categories and the derived categories of hereditary abelian categories. We show that this relation is well-behaved concerning thick subcategories. Then, we give a classification of the thick subcategories of Db(mod(A)) where A is a finite-dimensional hereditary algebra of finite or tame representation type. This enables us to classify the thick subcategories of algebraic triangulated categories with finitely many indecomposable objects and the thick subcategories of the stable module categories of an important class of selfinjective algebras of tame representation type. The classification is of a combinatorial nature and we emphasise combinatorial aspects such as counting and the lattice structure. Zusammenfassung. In dieser Doktorarbeit untersuchen wir die dicken Unterkategorien fur stabile Kategorien von gewissen Frobenius Kategorien und fur derivierte Kategorien von erblichen abelschen Kategorien. Beide Arten von Kategorien kommen in der Darstellungstheorie von endlich-dimensionalen Algebren vor. Es gibt einen engen Zusammenhang zwischen solchen stabilen Kategorien und den derivierten Kategorien von erblichen abelschen Kategorien. Wir zeigen, dass diese Beziehung vertraglich ist mit den dicken Unterkategorien. Dann klassifizieren wir die dicken Unterkategorien von Db(mod(A)), wobei A eine endlich-dimensionale erbliche Algebra vom endlichen oder vom zahmen Darstellungstyp ist. Dies versetzt uns in die Lage, die dicken Unterkategorien von algebraischen triangulierten Kategorien mit endlich vielen unzerlegbaren Objekten zu klassifizieren. Ebenso klassifizieren wir die dicken Unterkategorien einer wichtigen Klasse von selbst-injektiven Algebren vom zahmen Darstellungstyp. Die Klassifikation ist kombinatorischer Natur und wir legen besonderen Wert auf kombinatorische Aspekte wie Zahlen und die Verbandsstruktur. Acknowledgements. First and foremost I wish to express my thanks to my supervisor, Professor Henning Krause. I thank him for his support, for helpful discussions and for coming up with the interesting topic of this thesis. I have created important parts of the thesis during my research stay in Paris with Professor Bernhard Keller in spring 2010. I sincerely thank him for giving me this opportunity, and for his very profitable assistance during this time. I would also like to thank the members and the visitors of the Paderborn Representation Theory Group and the Bielefeld Representation Theory Group for helpful discussions. I am particularly grateful to Professor Hideto Asashiba, Estanislao Herscovich, Dirk Kussin, Adam-Christiaan van Roosmalen, Greg Stevenson, Jan Stovicek and Dieter Vossieck. Moreover, I thank Philipp Lampe and Greg Stevenson for proofreading parts of the thesis. I would like to thank Martin Rubey for helpful references. Finally, I am indebted to the IRTG ‘Geometry and Analysis of Symmetries’ in Paderborn for the financial support in form of a scholarship. I am also grateful to the CRC 701 ‘Spectral Structures and Topological Methods in Mathematics’ in Bielefeld for the financial support during the final period of my PhD studies." @default.
- W35640847 created "2016-06-24" @default.
- W35640847 creator A5063392238 @default.
- W35640847 date "2011-01-01" @default.
- W35640847 modified "2023-09-24" @default.
- W35640847 title "A combinatorial classification of thick subcategories of derived and stable categories" @default.
- W35640847 cites W1512904611 @default.
- W35640847 cites W1546328792 @default.
- W35640847 cites W1580929989 @default.
- W35640847 cites W1590090921 @default.
- W35640847 cites W1601893025 @default.
- W35640847 cites W1678462833 @default.
- W35640847 cites W170490389 @default.
- W35640847 cites W17349356 @default.
- W35640847 cites W180195891 @default.
- W35640847 cites W185243367 @default.
- W35640847 cites W1898987871 @default.
- W35640847 cites W1921063444 @default.
- W35640847 cites W1970852881 @default.
- W35640847 cites W1972006298 @default.
- W35640847 cites W1972912363 @default.
- W35640847 cites W1982067917 @default.
- W35640847 cites W1987497698 @default.
- W35640847 cites W1989033181 @default.
- W35640847 cites W1989962651 @default.
- W35640847 cites W1990724181 @default.
- W35640847 cites W1991043267 @default.
- W35640847 cites W1991618001 @default.
- W35640847 cites W1997822738 @default.
- W35640847 cites W1997850871 @default.
- W35640847 cites W2000076117 @default.
- W35640847 cites W2002403370 @default.
- W35640847 cites W2013327405 @default.
- W35640847 cites W2015227148 @default.
- W35640847 cites W2016319756 @default.
- W35640847 cites W201935133 @default.
- W35640847 cites W2020518828 @default.
- W35640847 cites W2022220170 @default.
- W35640847 cites W2026361694 @default.
- W35640847 cites W2028625054 @default.
- W35640847 cites W2038435731 @default.
- W35640847 cites W2046350427 @default.
- W35640847 cites W2048214135 @default.
- W35640847 cites W2056603165 @default.
- W35640847 cites W2060325401 @default.
- W35640847 cites W2063412837 @default.
- W35640847 cites W2063619670 @default.
- W35640847 cites W2064164619 @default.
- W35640847 cites W2070286248 @default.
- W35640847 cites W2075135589 @default.
- W35640847 cites W2081257302 @default.
- W35640847 cites W2089420710 @default.
- W35640847 cites W2093630568 @default.
- W35640847 cites W2093890854 @default.
- W35640847 cites W2098677164 @default.
- W35640847 cites W2113106328 @default.
- W35640847 cites W2132405036 @default.
- W35640847 cites W2143849764 @default.
- W35640847 cites W2163345139 @default.
- W35640847 cites W2168688319 @default.
- W35640847 cites W2170100806 @default.
- W35640847 cites W2185078250 @default.
- W35640847 cites W2503589681 @default.
- W35640847 cites W2552568793 @default.
- W35640847 cites W2572527475 @default.
- W35640847 cites W2573348363 @default.
- W35640847 cites W2574081884 @default.
- W35640847 cites W2953174876 @default.
- W35640847 cites W2963379246 @default.
- W35640847 cites W2963856264 @default.
- W35640847 cites W2964108610 @default.
- W35640847 cites W2989833896 @default.
- W35640847 cites W3081859878 @default.
- W35640847 cites W614552123 @default.
- W35640847 cites W86367363 @default.
- W35640847 hasPublicationYear "2011" @default.
- W35640847 type Work @default.
- W35640847 sameAs 35640847 @default.
- W35640847 citedByCount "1" @default.
- W35640847 countsByYear W356408472018 @default.
- W35640847 crossrefType "journal-article" @default.
- W35640847 hasAuthorship W35640847A5063392238 @default.
- W35640847 hasConcept C114614502 @default.
- W35640847 hasConcept C136119220 @default.
- W35640847 hasConcept C136170076 @default.
- W35640847 hasConcept C154945302 @default.
- W35640847 hasConcept C157480366 @default.
- W35640847 hasConcept C18903297 @default.
- W35640847 hasConcept C202444582 @default.
- W35640847 hasConcept C2777212361 @default.
- W35640847 hasConcept C2777299769 @default.
- W35640847 hasConcept C33923547 @default.
- W35640847 hasConcept C41008148 @default.
- W35640847 hasConcept C86803240 @default.
- W35640847 hasConceptScore W35640847C114614502 @default.
- W35640847 hasConceptScore W35640847C136119220 @default.
- W35640847 hasConceptScore W35640847C136170076 @default.
- W35640847 hasConceptScore W35640847C154945302 @default.
- W35640847 hasConceptScore W35640847C157480366 @default.
- W35640847 hasConceptScore W35640847C18903297 @default.