Matches in SemOpenAlex for { <https://semopenalex.org/work/W35688032> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W35688032 endingPage "579" @default.
- W35688032 startingPage "564" @default.
- W35688032 abstract "The Hierarchical Dirichlet Process (HDP) is a Bayesian nonparametric prior for grouped data, such as collections of documents, where each group is a mixture of a set of shared mixture densities, or topics, where the number of topics is not fixed, but grows with data size. The Nested Dirichlet Process (NDP) builds on the HDP to cluster the documents, but allowing them to choose only from a set of specific topic mixtures. In many applications, such a set of topic mixtures may be identified with the set of entities for the collection. However, in many applications, multiple entities are associated with documents, and often the set of entities may also not be known completely in advance. In this paper, we address this problem using a nested HDP (nHDP), where the base distribution of an outer HDP is itself an HDP. The inner HDP creates a countably infinite set of topic mixtures and associates them with entities, while the outer HDP associates documents with these entities or topic mixtures. Making use of a nested Chinese Restaurant Franchise (nCRF) representation for the nested HDP, we propose a collapsed Gibbs sampling based inference algorithm for the model. Because of couplings between two HDP levels, scaling up is naturally a challenge for the inference algorithm. We propose an inference algorithm by extending the direct sampling scheme of the HDP to two levels. In our experiments on two real world research corpora, we show that, even when large fractions of author entities are hidden, the nHDP is able to generalize significantly better than existing models. More importantly, we are able to detect missing authors at a reasonable level of accuracy." @default.
- W35688032 created "2016-06-24" @default.
- W35688032 creator A5038482152 @default.
- W35688032 creator A5048171104 @default.
- W35688032 creator A5057254185 @default.
- W35688032 date "2013-01-01" @default.
- W35688032 modified "2023-10-11" @default.
- W35688032 title "Nested Hierarchical Dirichlet Process for Nonparametric Entity-Topic Analysis" @default.
- W35688032 cites W1967687583 @default.
- W35688032 cites W2037668034 @default.
- W35688032 cites W2066102342 @default.
- W35688032 cites W2069429561 @default.
- W35688032 cites W2145677303 @default.
- W35688032 cites W2150286230 @default.
- W35688032 cites W2158266063 @default.
- W35688032 cites W3104490327 @default.
- W35688032 doi "https://doi.org/10.1007/978-3-642-40991-2_36" @default.
- W35688032 hasPublicationYear "2013" @default.
- W35688032 type Work @default.
- W35688032 sameAs 35688032 @default.
- W35688032 citedByCount "4" @default.
- W35688032 countsByYear W356880322015 @default.
- W35688032 countsByYear W356880322016 @default.
- W35688032 countsByYear W356880322018 @default.
- W35688032 countsByYear W356880322022 @default.
- W35688032 crossrefType "book-chapter" @default.
- W35688032 hasAuthorship W35688032A5038482152 @default.
- W35688032 hasAuthorship W35688032A5048171104 @default.
- W35688032 hasAuthorship W35688032A5057254185 @default.
- W35688032 hasBestOaLocation W356880321 @default.
- W35688032 hasConcept C102366305 @default.
- W35688032 hasConcept C105795698 @default.
- W35688032 hasConcept C107673813 @default.
- W35688032 hasConcept C11413529 @default.
- W35688032 hasConcept C141318989 @default.
- W35688032 hasConcept C154945302 @default.
- W35688032 hasConcept C171686336 @default.
- W35688032 hasConcept C199360897 @default.
- W35688032 hasConcept C204321447 @default.
- W35688032 hasConcept C2781280628 @default.
- W35688032 hasConcept C33923547 @default.
- W35688032 hasConcept C41008148 @default.
- W35688032 hasConcept C500882744 @default.
- W35688032 hasConcept C98045186 @default.
- W35688032 hasConceptScore W35688032C102366305 @default.
- W35688032 hasConceptScore W35688032C105795698 @default.
- W35688032 hasConceptScore W35688032C107673813 @default.
- W35688032 hasConceptScore W35688032C11413529 @default.
- W35688032 hasConceptScore W35688032C141318989 @default.
- W35688032 hasConceptScore W35688032C154945302 @default.
- W35688032 hasConceptScore W35688032C171686336 @default.
- W35688032 hasConceptScore W35688032C199360897 @default.
- W35688032 hasConceptScore W35688032C204321447 @default.
- W35688032 hasConceptScore W35688032C2781280628 @default.
- W35688032 hasConceptScore W35688032C33923547 @default.
- W35688032 hasConceptScore W35688032C41008148 @default.
- W35688032 hasConceptScore W35688032C500882744 @default.
- W35688032 hasConceptScore W35688032C98045186 @default.
- W35688032 hasLocation W356880321 @default.
- W35688032 hasLocation W356880322 @default.
- W35688032 hasOpenAccess W35688032 @default.
- W35688032 hasPrimaryLocation W356880321 @default.
- W35688032 hasRelatedWork W1869691649 @default.
- W35688032 hasRelatedWork W2167810193 @default.
- W35688032 hasRelatedWork W2310152247 @default.
- W35688032 hasRelatedWork W2544117155 @default.
- W35688032 hasRelatedWork W2597258728 @default.
- W35688032 hasRelatedWork W2951353349 @default.
- W35688032 hasRelatedWork W3141344012 @default.
- W35688032 hasRelatedWork W3196729046 @default.
- W35688032 hasRelatedWork W4200300215 @default.
- W35688032 hasRelatedWork W4225525525 @default.
- W35688032 isParatext "false" @default.
- W35688032 isRetracted "false" @default.
- W35688032 magId "35688032" @default.
- W35688032 workType "book-chapter" @default.