Matches in SemOpenAlex for { <https://semopenalex.org/work/W357084953> ?p ?o ?g. }
- W357084953 abstract "This thesis is concerned with the theoretical and computational aspects of generating solutions to problems involving materials with fading memory, known as viscoelastic materials. Viscoelastic materials can be loosely described as those whose current stress configuration depends on their recent past. Viscoelastic constitutive laws for stress typically take the form of a sum of an instantaneous response term and an integral over their past responses. Such laws are called hereditary integral constitutive laws. The main purpose of this study is to analyse adaptive finite element algorithms for the numerical solution of the quasistatic equations governing the small displacement of a viscoelastic body subjected to prescribed body forces and tractions. Such algorithms for the hereditary integral formulation have appeared in the literature. However the approach here is to consider an equivalent formulation based on the introduction of a set of unobservable internal variables. In the linear viscoelastic case we exploit the structure of the quasistatic problem to remove the displacement from the equations governing the internal variables. This results in an elliptic problem with right hand side dependent on the internal variables, and a separate independent system of ordinary differential equations in a Hilbert space. We consider a continuous in space and time Galerkin finite element approximation to the reformulated problem for which we derive optimal order a priori error estimates. We then apply the techniques of the theory of adaptive finite element methods for elliptic boundary value problems and ordinary differential equations, deriving reliable and efficient a posteriori error estimates and detailing adaptive algorithms. We consider the idea of splitting the error into space and time portions and present results regarding a splitting for space time projections. The ideas for splitting the error in projections is applied to the finite element approximation and a further set of a posteriori error estimates derived. Numerical studies confirm the theoretical properties of all of the estimators and we show how they can be used to drive adaptive in space and time solution algorithms. We consider the extension of our results for the linear case to the constitutively nonlinear case. A model problem is formulated and the general techniques for dealing with a posteriori error estimation for nonlinear space time problems are considered." @default.
- W357084953 created "2016-06-24" @default.
- W357084953 creator A5056108409 @default.
- W357084953 date "2008-01-01" @default.
- W357084953 modified "2023-09-23" @default.
- W357084953 title "Adaptive finite elements for viscoelastic deformation problems" @default.
- W357084953 cites W129017765 @default.
- W357084953 cites W1492326914 @default.
- W357084953 cites W1498734923 @default.
- W357084953 cites W1559772758 @default.
- W357084953 cites W1580130003 @default.
- W357084953 cites W1601728065 @default.
- W357084953 cites W1933568329 @default.
- W357084953 cites W1978805351 @default.
- W357084953 cites W1981394945 @default.
- W357084953 cites W1981745143 @default.
- W357084953 cites W1985196555 @default.
- W357084953 cites W1992147403 @default.
- W357084953 cites W1995479616 @default.
- W357084953 cites W2004434975 @default.
- W357084953 cites W2006272017 @default.
- W357084953 cites W2008736432 @default.
- W357084953 cites W2009985306 @default.
- W357084953 cites W2013673957 @default.
- W357084953 cites W2016859302 @default.
- W357084953 cites W2019656061 @default.
- W357084953 cites W2021036023 @default.
- W357084953 cites W2024945409 @default.
- W357084953 cites W2026655730 @default.
- W357084953 cites W2033698269 @default.
- W357084953 cites W2038191139 @default.
- W357084953 cites W2038626747 @default.
- W357084953 cites W2039924562 @default.
- W357084953 cites W2048919726 @default.
- W357084953 cites W2051722950 @default.
- W357084953 cites W2059512870 @default.
- W357084953 cites W2061040576 @default.
- W357084953 cites W2062326781 @default.
- W357084953 cites W2064342116 @default.
- W357084953 cites W2071036364 @default.
- W357084953 cites W2087312801 @default.
- W357084953 cites W2088793460 @default.
- W357084953 cites W2092891737 @default.
- W357084953 cites W2092910485 @default.
- W357084953 cites W2093478476 @default.
- W357084953 cites W2099988620 @default.
- W357084953 cites W2103349556 @default.
- W357084953 cites W2113598793 @default.
- W357084953 cites W2118065910 @default.
- W357084953 cites W2118509267 @default.
- W357084953 cites W2122676231 @default.
- W357084953 cites W2148262800 @default.
- W357084953 cites W2148639620 @default.
- W357084953 cites W2152848099 @default.
- W357084953 cites W2199169705 @default.
- W357084953 cites W2324833387 @default.
- W357084953 cites W240102008 @default.
- W357084953 cites W2429258439 @default.
- W357084953 cites W2487440882 @default.
- W357084953 cites W282406584 @default.
- W357084953 cites W3021722416 @default.
- W357084953 cites W653136046 @default.
- W357084953 cites W92607354 @default.
- W357084953 cites W140888180 @default.
- W357084953 cites W1900885686 @default.
- W357084953 cites W2116548253 @default.
- W357084953 hasPublicationYear "2008" @default.
- W357084953 type Work @default.
- W357084953 sameAs 357084953 @default.
- W357084953 citedByCount "0" @default.
- W357084953 crossrefType "dissertation" @default.
- W357084953 hasAuthorship W357084953A5056108409 @default.
- W357084953 hasConcept C121332964 @default.
- W357084953 hasConcept C134306372 @default.
- W357084953 hasConcept C135628077 @default.
- W357084953 hasConcept C186541917 @default.
- W357084953 hasConcept C186899397 @default.
- W357084953 hasConcept C202973686 @default.
- W357084953 hasConcept C28826006 @default.
- W357084953 hasConcept C33923547 @default.
- W357084953 hasConcept C4708273 @default.
- W357084953 hasConcept C62520636 @default.
- W357084953 hasConcept C62799726 @default.
- W357084953 hasConcept C97355855 @default.
- W357084953 hasConceptScore W357084953C121332964 @default.
- W357084953 hasConceptScore W357084953C134306372 @default.
- W357084953 hasConceptScore W357084953C135628077 @default.
- W357084953 hasConceptScore W357084953C186541917 @default.
- W357084953 hasConceptScore W357084953C186899397 @default.
- W357084953 hasConceptScore W357084953C202973686 @default.
- W357084953 hasConceptScore W357084953C28826006 @default.
- W357084953 hasConceptScore W357084953C33923547 @default.
- W357084953 hasConceptScore W357084953C4708273 @default.
- W357084953 hasConceptScore W357084953C62520636 @default.
- W357084953 hasConceptScore W357084953C62799726 @default.
- W357084953 hasConceptScore W357084953C97355855 @default.
- W357084953 hasLocation W3570849531 @default.
- W357084953 hasOpenAccess W357084953 @default.
- W357084953 hasPrimaryLocation W3570849531 @default.
- W357084953 hasRelatedWork W1159378272 @default.