Matches in SemOpenAlex for { <https://semopenalex.org/work/W35962554> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W35962554 abstract "Aquesta tesi esta dividida en dues parts diferents. En la primera, estudiam els sistemes quadratics (sistemes polinomials de grau dos) que tenen un invers de factor integrant polinomial. En la segona, estudiam tres problemes diferents referits als sistemes diferencials polinomials.La primera partEn lestudi dels sistemes diferencials plans el coneixement duna integral primera es molt important. Els seus conjunts de nivell estan formats per orbites i ens permeten dibuixar el retrat de fase del sistema, objectiu principal de la teoria qualitativa de les equacions diferencials al pla. Com ja se sap, existeix una bijeccio entre lestudi de les integrals primeres i lestudi dels inversos de factor integrant. De fet, es mes senzill lestudi dels inversos de factor integrant que el de les integrals primeres. Una classe es dels sistemes quadratics ampliament estudiada dins els sistemes diferencials al pla es la dels sistemes quadratics. Hi ha mes dun miler darticles publicats sobre aquest tipus de sistemes, pero encara som lluny de coneixer quins daquests sistemes son integrables, es a dir, si tenen una integral primera.En aquest treball, estudiam els sistemes quadratics que tenen un invers de factor integrant polinomial V = V(x, y), i per tant tambe tenen una integral primera, definida alla on no sanul·la. Aquesta classe de sistemes diferencials es important per diferents motius:1. La integral primera es sempre Darboux.2. Conte la classe dels sistemes quadratics homogenis, ampliament estudiada (Date, Sibirskii, Vulpe...).3. Conte la classe dels sistemes quadratics amb un centre, tambe estudiada (Dulac, Kapteyn, Bautin,...).4. Conte la classe dels sistemes quadratics Hamiltonians (Artes, Llibre, Vulpe).5. Conte la classe dels sistemes quadratics amb una integral primera polinomial (Chavarriga, Garcia, Llibre, Perez de Rio, Rodriguez).6. Conte la classe dels sistemes quadratics amb una integral primera racional de grau dos (Cairo, Llibre).La segona partPresentam els seguents tres articles:1. A. Ferragut, J. Llibre and A. Mahdi, Polynomial inverse integrating factors for polynomial vector ?elds, to appear in Discrete and Continuous Dynamical Systems.2. A. Ferragut, J. Llibre and M.A. Teixeira, Periodic orbits for a class of C(1) threedimensional systems, submitted.3. A. Ferragut, J. Llibre and M.A. Teixeira, Hyperbolic periodic orbits coming from the bifurcation of a 4-dimensional non-linear center, to appear in Int. J. Of Bifurcation and Chaos.En el primer article donam tres resultats principals. Primer provam que un camp vectorial polinomial que te una integral primera polinomial te un invers de factor integrant polinomial. El segon resultat es un exemple dun camp vectorial polinomial que te una integral primera racional i no te ni una integral primera polinomial ni un invers de factor integrant polinomial. Era un problema obert el fet de sebre si existien camps vectorials polinomials veri?cant aquestes condicions. El tercer resultat es un exemple dun camp vectorial polinomial que te un centre i no te invers de factor integrant polinomial. Un exemple daquest tipus era esperat pero desconegut en la literatura.En el segon article estudiam camps vectorials polinomials reversibles de grau quatre en R(3) que tenen, sota certes condicions generiques, un nombre arbitrari d`orbitesperi`odiques hiperb`oliques. Sense aquestes condicions, tenen un nombre arbitrari dorbites periodiques hiperboliques. Sense aquestes condicions, tenen un nombre arbitrari dorbites periodiques.Finalment, en el tercer article, estudiam la pertorbacio dun centre de R(4) que prove dun problema de la fisica. Mitjancant la teoria dels termes mitjans de primer ordre dins els camps vectorials polinomials de grau quatre, el sistema pertorbat pot tenir fins a setze orbites periodiques hiperboliques bifurcant de les orbites perodiques del centre._______________________________________________________________This thesis is divided into two different parts. In the first one, we study the quadratic systems (polynomial systems of degree two) having a polynomial inverse integrating factor. In the second one, we study three different problems related to polynomial differential systems.The ?rst part.It is very important, for planar differential systems, the knowledge of a ?rst integral. Its level sets are formed by orbits and they let us draw the phase portrait of the system, which is the main objective of the qualitative theory of planar differential equations.As it is known, there is a bijection between the study of the ?rst integrals and the study of inverse integrating factors. In fact, it is easier to study the inverse integrating factors than the ?rst integrals.A widely studied class of planar differential systems is the quadratic one. There are more than a thousand published articles about this subject of differential systems, but we are far away of knowing which quadratic systems are integrable, that is, if they have a ?rst integral.In this work, we study the quadratic systems having a polynomial inverse integrating factor V = V (x, y), so they also have a ?rst integral, de?ned where V does not vanish. This class of quadratic systems is important for several reasons:1. The ?rst integral is always Darboux.2. It contains the class of homogeneous quadratic system, widely studied (Date, Sibirskii, Vulpe,...).3. It contains the class of quadratic systems having a center, also studied (Dulac, Kapteyn, Bautin,...).4. It contains the class of Hamiltonian quadratic systems (Artes, Llibre, Vulpe).5. It contains the class of quadratic systems having a polynomial ?rst integral (Chavarriga, Garcia, Llibre, Perez de Rio, Rodriguez).6. It contains the class of quadratic systems having a rational ?rst integral of de gree two (Cairo, Llibre).The classi?cation of the quadratic systems having a polynomial inverse integrating factor is not completely ?nished. There remain near a 5% of the cases to study. We leave their study for an immediate future.The second part.We present the following three articles:1. A. Ferragut, J. Llibre and A. Mahdi, Polynomial inverse integrating factors for polynomial vector ?elds, to appear in Discrete and Continuous Dynamical Systems.2. A. Ferragut, J. Llibre and M.A. Teixeira, Periodic orbits for a class of C(1) threedimensional systems, submitted.3. A. Ferragut, J. Llibre and M.A. Teixeira, Hyperbolic periodic orbits coming from the bifurcation of a 4-dimensional non-linear center, to appear in Int. J. Of Bifurcation and Chaos.In the first article we give three main results. First we prove that a polynomial vector field having a polynomial must have a polynomial inverse integrating factor. The second one is an example of a polynomial vector ?eld having a rational ?rst integral and having neither polynomial ?rst integral nor polynomial inverse integrating factor. It was an open problem to know if there exist polynomial vector ?elds verifying these conditions. The third one is an example of a polynomial vector ?eld having a center and not having a polynomial inverse integrating factor. An example of this type was expected but unknown in the literature.In the second article we study reversible polynomial vector ?elds of degree four in R(3) which have, under certain generic conditions, an arbitrary number of hyperbolic periodic orbits. Without these conditions, they have an arbitrary number of periodic orbits.Finally, in the third article, we study the perturbation of a center in R(4) which comes from a problem of physics. By the ?rst order averaging theory and perturbing inside the polynomial vector ?elds of degree four, the perturbed system may have at most sixteen hyperbolic periodic orbits bifurcating from the periodic orbits of the center." @default.
- W35962554 created "2016-06-24" @default.
- W35962554 creator A5050108257 @default.
- W35962554 date "2006-07-13" @default.
- W35962554 modified "2023-09-24" @default.
- W35962554 title "Polynomial inverse integrating factors of quadratic differential systems and other results" @default.
- W35962554 cites W1481616730 @default.
- W35962554 cites W1498112751 @default.
- W35962554 cites W1515307033 @default.
- W35962554 cites W1556059214 @default.
- W35962554 cites W1579005859 @default.
- W35962554 cites W1603340857 @default.
- W35962554 cites W1622118395 @default.
- W35962554 cites W197103073 @default.
- W35962554 cites W1974942353 @default.
- W35962554 cites W1981798823 @default.
- W35962554 cites W1984170586 @default.
- W35962554 cites W1990493052 @default.
- W35962554 cites W1993365856 @default.
- W35962554 cites W1997290261 @default.
- W35962554 cites W2014480797 @default.
- W35962554 cites W2015507587 @default.
- W35962554 cites W2017155383 @default.
- W35962554 cites W2018542203 @default.
- W35962554 cites W2019935851 @default.
- W35962554 cites W2029272072 @default.
- W35962554 cites W2033142381 @default.
- W35962554 cites W2041282938 @default.
- W35962554 cites W2041381978 @default.
- W35962554 cites W2051773597 @default.
- W35962554 cites W2057068539 @default.
- W35962554 cites W2062993917 @default.
- W35962554 cites W2068005970 @default.
- W35962554 cites W2076063965 @default.
- W35962554 cites W2076769740 @default.
- W35962554 cites W2078164200 @default.
- W35962554 cites W2089729261 @default.
- W35962554 cites W2089876099 @default.
- W35962554 cites W2110602566 @default.
- W35962554 cites W2116690331 @default.
- W35962554 cites W2124141913 @default.
- W35962554 cites W2124529968 @default.
- W35962554 cites W2147988029 @default.
- W35962554 cites W2158334808 @default.
- W35962554 cites W2168662972 @default.
- W35962554 cites W2244572872 @default.
- W35962554 cites W2318190679 @default.
- W35962554 cites W2357722947 @default.
- W35962554 cites W2370367582 @default.
- W35962554 cites W2917649078 @default.
- W35962554 cites W3010782316 @default.
- W35962554 cites W3201297982 @default.
- W35962554 cites W569622635 @default.
- W35962554 cites W594548925 @default.
- W35962554 cites W597049470 @default.
- W35962554 cites W946335828 @default.
- W35962554 hasPublicationYear "2006" @default.
- W35962554 type Work @default.
- W35962554 sameAs 35962554 @default.
- W35962554 citedByCount "1" @default.
- W35962554 countsByYear W359625542021 @default.
- W35962554 crossrefType "journal-article" @default.
- W35962554 hasAuthorship W35962554A5050108257 @default.
- W35962554 hasConcept C129844170 @default.
- W35962554 hasConcept C134306372 @default.
- W35962554 hasConcept C207467116 @default.
- W35962554 hasConcept C2524010 @default.
- W35962554 hasConcept C28826006 @default.
- W35962554 hasConcept C33923547 @default.
- W35962554 hasConcept C90119067 @default.
- W35962554 hasConceptScore W35962554C129844170 @default.
- W35962554 hasConceptScore W35962554C134306372 @default.
- W35962554 hasConceptScore W35962554C207467116 @default.
- W35962554 hasConceptScore W35962554C2524010 @default.
- W35962554 hasConceptScore W35962554C28826006 @default.
- W35962554 hasConceptScore W35962554C33923547 @default.
- W35962554 hasConceptScore W35962554C90119067 @default.
- W35962554 hasLocation W359625541 @default.
- W35962554 hasOpenAccess W35962554 @default.
- W35962554 hasPrimaryLocation W359625541 @default.
- W35962554 hasRelatedWork W2128160641 @default.
- W35962554 hasRelatedWork W2136918404 @default.
- W35962554 hasRelatedWork W2519996128 @default.
- W35962554 hasRelatedWork W2731482015 @default.
- W35962554 hasRelatedWork W3181805319 @default.
- W35962554 hasRelatedWork W3187979428 @default.
- W35962554 hasRelatedWork W3191053095 @default.
- W35962554 isParatext "false" @default.
- W35962554 isRetracted "false" @default.
- W35962554 magId "35962554" @default.
- W35962554 workType "article" @default.