Matches in SemOpenAlex for { <https://semopenalex.org/work/W36176903> ?p ?o ?g. }
- W36176903 abstract "Protein identification has been more helpful than before in the diagnosis and treatment of many diseases, such as cancer, heart disease and HIV. Tandem mass spectrometry is a powerful tool for protein identification. In a typical experiment, proteins are broken into small amino acid oligomers called peptides. By determining the amino acid sequence of several peptides of a protein, its whole amino acid sequence can be inferred. Therefore, peptide identification is the first step and a central issue for protein identification. Tandem mass spectrometers can produce a large number of tandem mass spectra which are used for peptide identification. Two issues should be addressed to improve the performance of current peptide identification algorithms. Firstly, nearly all spectra are noise-contaminated. As a result, the accuracy of peptide identification algorithms may suffer from the noise in spectra. Secondly, the majority of spectra are not identifiable because they are of too poor quality. Therefore, much time is wasted attempting to identify these unidentifiable spectra. The goal of this research is to design spectrum pre-processing algorithms to both speedup and improve the reliability of peptide identification from tandem mass spectra. Firstly, as a tandem mass spectrum is a one dimensional signal consisting of dozens to hundreds of peaks, and majority of peaks are noisy peaks, a spectrum denoising algorithm is proposed to remove most noisy peaks of spectra. Experimental results show that our denoising algorithm can remove about 69% of peaks which are potential noisy peaks among a spectrum. At the same time, the number of spectra that can be identified by Mascot algorithm increases by 31% and 14% for two tandem mass spectrum datasets. Next, a two-stage recursive feature elimination based on support vector machines (SV M -RFE) and a sparse logistic regression method are proposed to select the most relevant features to describe the quality of tandem mass spectra. Our methods can effectively select the most relevant features" @default.
- W36176903 created "2016-06-24" @default.
- W36176903 creator A5050542674 @default.
- W36176903 date "2009-01-01" @default.
- W36176903 modified "2023-09-24" @default.
- W36176903 title "Pre-processing of tandem mass spectra using machine learning methods" @default.
- W36176903 cites W12820539 @default.
- W36176903 cites W1378570 @default.
- W36176903 cites W140777655 @default.
- W36176903 cites W1486632395 @default.
- W36176903 cites W1521843029 @default.
- W36176903 cites W1526146785 @default.
- W36176903 cites W1543113652 @default.
- W36176903 cites W1543636183 @default.
- W36176903 cites W1546052574 @default.
- W36176903 cites W1549656520 @default.
- W36176903 cites W1554944419 @default.
- W36176903 cites W1563088657 @default.
- W36176903 cites W1568976375 @default.
- W36176903 cites W1570713908 @default.
- W36176903 cites W1594031697 @default.
- W36176903 cites W1663973292 @default.
- W36176903 cites W1785221269 @default.
- W36176903 cites W1964940342 @default.
- W36176903 cites W1965875068 @default.
- W36176903 cites W1971378925 @default.
- W36176903 cites W1971887998 @default.
- W36176903 cites W1975450451 @default.
- W36176903 cites W1981593008 @default.
- W36176903 cites W1984566266 @default.
- W36176903 cites W1992419399 @default.
- W36176903 cites W1995693931 @default.
- W36176903 cites W1996600592 @default.
- W36176903 cites W2004201211 @default.
- W36176903 cites W2004515150 @default.
- W36176903 cites W2009478957 @default.
- W36176903 cites W2011716229 @default.
- W36176903 cites W2015840688 @default.
- W36176903 cites W2016605939 @default.
- W36176903 cites W2019787285 @default.
- W36176903 cites W2023096047 @default.
- W36176903 cites W2023356470 @default.
- W36176903 cites W2024984486 @default.
- W36176903 cites W2026465178 @default.
- W36176903 cites W2027197817 @default.
- W36176903 cites W2027469236 @default.
- W36176903 cites W2033745703 @default.
- W36176903 cites W2036466798 @default.
- W36176903 cites W2038615001 @default.
- W36176903 cites W2040170370 @default.
- W36176903 cites W2044917750 @default.
- W36176903 cites W2047109555 @default.
- W36176903 cites W2047275456 @default.
- W36176903 cites W2049293796 @default.
- W36176903 cites W2049633694 @default.
- W36176903 cites W2051064077 @default.
- W36176903 cites W2051367768 @default.
- W36176903 cites W2057851886 @default.
- W36176903 cites W2058532205 @default.
- W36176903 cites W2059957696 @default.
- W36176903 cites W2060318638 @default.
- W36176903 cites W2060542593 @default.
- W36176903 cites W2064443736 @default.
- W36176903 cites W2064619185 @default.
- W36176903 cites W2066159992 @default.
- W36176903 cites W2067191022 @default.
- W36176903 cites W2068379166 @default.
- W36176903 cites W2073459066 @default.
- W36176903 cites W2086717055 @default.
- W36176903 cites W2092485848 @default.
- W36176903 cites W2093620473 @default.
- W36176903 cites W2094910305 @default.
- W36176903 cites W2095365800 @default.
- W36176903 cites W2097126443 @default.
- W36176903 cites W2098481983 @default.
- W36176903 cites W2099322651 @default.
- W36176903 cites W2100682149 @default.
- W36176903 cites W2104653669 @default.
- W36176903 cites W2107956883 @default.
- W36176903 cites W2112078820 @default.
- W36176903 cites W2113945996 @default.
- W36176903 cites W2115755118 @default.
- W36176903 cites W2116948717 @default.
- W36176903 cites W2117658559 @default.
- W36176903 cites W2117897510 @default.
- W36176903 cites W2118142823 @default.
- W36176903 cites W2118993019 @default.
- W36176903 cites W2119387367 @default.
- W36176903 cites W2121947440 @default.
- W36176903 cites W2122588871 @default.
- W36176903 cites W2122877379 @default.
- W36176903 cites W2123886946 @default.
- W36176903 cites W2127042395 @default.
- W36176903 cites W2127218421 @default.
- W36176903 cites W2130706354 @default.
- W36176903 cites W2135046866 @default.
- W36176903 cites W2135337307 @default.
- W36176903 cites W2135346934 @default.
- W36176903 cites W2137317896 @default.
- W36176903 cites W2140506762 @default.