Matches in SemOpenAlex for { <https://semopenalex.org/work/W367238719> ?p ?o ?g. }
- W367238719 abstract "Combinatorial group theory is the study of groups given bypresentations. Algebraic and geometric methods pervade this area of mathematics and it is the latter which forms the main theme of this thesis. In particular, we use diagrams and pictures over presentations to study problems in the domain of finitely presented groups. Our thesis is split into two distinct halves, though the techniques used in each are very similar. In Chapters 2 - 4 we study Pride groups with the aim to solve their word and conjugacy problems. We also study the second homotopy module of a natural presentation of a Pride group. Chapters 6 and 7 are devoted to the study of relative presentations, with particular attention being paid to those of the form . Determining when such presentations are aspherical is our main objective.Chapter 1 covers the basic material that is used throughout this thesis. The main topics of interest are free groups; presentations of groups; the word, conjugacy, and isomorphism problems for finitely presented groups; first and second order Dehn functions of finitely presented groups; diagrams and pictures over finite presentations; and the second homotopy module of a finite presentation. The reader may skip Chapter 1 if they are familiar with this material.A Pride group is a finitely presented group which can be defined by means of a finite simplicial graph; this is done in Chapter 2. Examples of Pride groups are given in Section 2.1. This section also contains the statements of Conditions (I), (II), (H-I), (H-II), and the asphericity condition. We will always assume that a Pride group satisfies one of these conditions. In Section 2.2 we survey the known results that appear in the literature, while in Section 2.3 we presentour original results. We obtain isoperimetric functions for a vertex-finite Pride group G which satisfies (I), (II), (H-I) or (H-II). Sufficient conditions are then obtained for G to have a soluble word problem. Solutions of the conjugacy problem for G are also obtained. However, we require that G satisfies some extra conditions. We calculate a generating set for the second homotopy module of the natural presentation of a non-spherical Pride group, i.e. one which satisfies the asphericity condition. Using this generating set, we obtain an upper bound for the second order Dehn function of a non-spherical vertex-free Pride group. Wealso obtain information about the second order Dehn function of an arbitrary non-spherical Pride group.Chapter 3 contains various technical results that are needed in Chapter 4. The main focus is that of diagrams over the standard presentation of a vertex-finite Pride group. We study simply-connected r-diagrams in Section 3.1 and in Section 3.2 we study annular r-diagrams. Propositions 3.1.1, 3.2.1, 3.2.2, and Theorems 3.2.1 and 3.2.2 are the main results of this chapter.Chapters 4 and 5 are devoted to the proofs of our main results. Proofs of our results for the word and conjugacyproblems of a vertex-finite Pride group are contained in Chapter 4, while Chapter 5 contains proofs of ourresults about the second homotopy module of a non-spherical Pride group. Chapter 5 also contains a study of pictures over the natural presentation of such a group.In Chapter 6, we turn our attention to relative presentations. Our interest lies in determining when such presentations are aspherical. Relevant background material and definitions are given in this chapter and pictures over relative presentations are also studied. Five tests which are used to determine whether or not a relative presentationis aspherical are given in Section 6.4. Chapter 6 also contains a brief survey of known results in this area.In Chapter 7, the final chapter of this thesis, we present our original contribution to the area of aspherical relative presentations. In particular, we determine when the relative presentation is aspherical where n is greater than or equal to 4 and a, b are elements of H each of order at least 3. There are four exceptional cases for which asphericity cannot be determined." @default.
- W367238719 created "2016-06-24" @default.
- W367238719 creator A5081130179 @default.
- W367238719 date "2008-01-01" @default.
- W367238719 modified "2023-09-22" @default.
- W367238719 title "Geometric methods in the study of Pride groups and relative presentations" @default.
- W367238719 cites W1516278578 @default.
- W367238719 cites W1606202023 @default.
- W367238719 cites W1664190959 @default.
- W367238719 cites W1678471064 @default.
- W367238719 cites W1725755469 @default.
- W367238719 cites W1970520369 @default.
- W367238719 cites W1973933705 @default.
- W367238719 cites W1974769501 @default.
- W367238719 cites W1978363088 @default.
- W367238719 cites W1984418376 @default.
- W367238719 cites W1985126757 @default.
- W367238719 cites W1991614495 @default.
- W367238719 cites W1991866868 @default.
- W367238719 cites W1993820579 @default.
- W367238719 cites W1995131860 @default.
- W367238719 cites W1995283887 @default.
- W367238719 cites W1995790278 @default.
- W367238719 cites W1996511490 @default.
- W367238719 cites W2000575327 @default.
- W367238719 cites W2001895313 @default.
- W367238719 cites W2002321560 @default.
- W367238719 cites W2002764956 @default.
- W367238719 cites W2013777616 @default.
- W367238719 cites W2017671777 @default.
- W367238719 cites W2017740177 @default.
- W367238719 cites W2020685408 @default.
- W367238719 cites W2021164857 @default.
- W367238719 cites W2021363599 @default.
- W367238719 cites W2026950998 @default.
- W367238719 cites W204754913 @default.
- W367238719 cites W2057499020 @default.
- W367238719 cites W2078327871 @default.
- W367238719 cites W2078354770 @default.
- W367238719 cites W2081708005 @default.
- W367238719 cites W2081934763 @default.
- W367238719 cites W2082008128 @default.
- W367238719 cites W2083348127 @default.
- W367238719 cites W2084704193 @default.
- W367238719 cites W2090181075 @default.
- W367238719 cites W2093981152 @default.
- W367238719 cites W2098497745 @default.
- W367238719 cites W2128154606 @default.
- W367238719 cites W2129076774 @default.
- W367238719 cites W2133659753 @default.
- W367238719 cites W2135126413 @default.
- W367238719 cites W2139623322 @default.
- W367238719 cites W2153176842 @default.
- W367238719 cites W2247942670 @default.
- W367238719 cites W2328824725 @default.
- W367238719 cites W2333555861 @default.
- W367238719 cites W2334017186 @default.
- W367238719 cites W2963098250 @default.
- W367238719 cites W2990802139 @default.
- W367238719 cites W797757383 @default.
- W367238719 hasPublicationYear "2008" @default.
- W367238719 type Work @default.
- W367238719 sameAs 367238719 @default.
- W367238719 citedByCount "0" @default.
- W367238719 crossrefType "dissertation" @default.
- W367238719 hasAuthorship W367238719A5081130179 @default.
- W367238719 hasConcept C111919701 @default.
- W367238719 hasConcept C115624301 @default.
- W367238719 hasConcept C145420912 @default.
- W367238719 hasConcept C17744445 @default.
- W367238719 hasConcept C178790620 @default.
- W367238719 hasConcept C185592680 @default.
- W367238719 hasConcept C199539241 @default.
- W367238719 hasConcept C202444582 @default.
- W367238719 hasConcept C203436722 @default.
- W367238719 hasConcept C2779728303 @default.
- W367238719 hasConcept C2780129039 @default.
- W367238719 hasConcept C2781311116 @default.
- W367238719 hasConcept C33923547 @default.
- W367238719 hasConcept C41008148 @default.
- W367238719 hasConcept C8010536 @default.
- W367238719 hasConcept C87945829 @default.
- W367238719 hasConcept C90988201 @default.
- W367238719 hasConceptScore W367238719C111919701 @default.
- W367238719 hasConceptScore W367238719C115624301 @default.
- W367238719 hasConceptScore W367238719C145420912 @default.
- W367238719 hasConceptScore W367238719C17744445 @default.
- W367238719 hasConceptScore W367238719C178790620 @default.
- W367238719 hasConceptScore W367238719C185592680 @default.
- W367238719 hasConceptScore W367238719C199539241 @default.
- W367238719 hasConceptScore W367238719C202444582 @default.
- W367238719 hasConceptScore W367238719C203436722 @default.
- W367238719 hasConceptScore W367238719C2779728303 @default.
- W367238719 hasConceptScore W367238719C2780129039 @default.
- W367238719 hasConceptScore W367238719C2781311116 @default.
- W367238719 hasConceptScore W367238719C33923547 @default.
- W367238719 hasConceptScore W367238719C41008148 @default.
- W367238719 hasConceptScore W367238719C8010536 @default.
- W367238719 hasConceptScore W367238719C87945829 @default.
- W367238719 hasConceptScore W367238719C90988201 @default.