Matches in SemOpenAlex for { <https://semopenalex.org/work/W36847873> ?p ?o ?g. }
- W36847873 endingPage "107" @default.
- W36847873 startingPage "97" @default.
- W36847873 abstract "Gene regulatory network is a model of a network that describes the relationships among genes in a given condition. However, constructing gene regulatory network is a complicated task as high-throughput technologies generate large-scale of data compared to number of sample. In addition, the data involves a substantial amount of noise and false positive results that hinder the downstream analysis performance. To address these problems Bayesian network model has attracted the most attention. However, the key challenge in using Bayesian network to model GRN is related to its learning structure. Bayesian network structure learning is NP-hard and computationally complex. Therefore, this research aims to address the issue related to Bayesian network structure learning by proposing a low-order conditional independence method. In addition we revised the gene regulatory relationships by integrating biological heterogeneous dataset to extract transcription factors for regulator and target genes. The empirical results indicate that proposed method works better with biological knowledge processing with a precision of 83.3% in comparison to a network that rely on microarray only, which achieved correctness of 80.85%." @default.
- W36847873 created "2016-06-24" @default.
- W36847873 creator A5019045507 @default.
- W36847873 creator A5067483180 @default.
- W36847873 date "2013-01-01" @default.
- W36847873 modified "2023-10-17" @default.
- W36847873 title "Reconstructing Gene Regulatory Network Using Heterogeneous Biological Data" @default.
- W36847873 cites W1556492790 @default.
- W36847873 cites W1984832953 @default.
- W36847873 cites W2010313062 @default.
- W36847873 cites W2045250185 @default.
- W36847873 cites W2082496903 @default.
- W36847873 cites W2091689232 @default.
- W36847873 cites W2103696082 @default.
- W36847873 cites W2114978011 @default.
- W36847873 cites W2115478488 @default.
- W36847873 cites W2124201592 @default.
- W36847873 cites W2128985829 @default.
- W36847873 cites W2136988691 @default.
- W36847873 cites W2146678343 @default.
- W36847873 cites W2279481061 @default.
- W36847873 cites W2542771499 @default.
- W36847873 cites W2611370172 @default.
- W36847873 doi "https://doi.org/10.1007/978-3-642-44949-9_10" @default.
- W36847873 hasPublicationYear "2013" @default.
- W36847873 type Work @default.
- W36847873 sameAs 36847873 @default.
- W36847873 citedByCount "0" @default.
- W36847873 crossrefType "book-chapter" @default.
- W36847873 hasAuthorship W36847873A5019045507 @default.
- W36847873 hasAuthorship W36847873A5067483180 @default.
- W36847873 hasConcept C104122410 @default.
- W36847873 hasConcept C104317684 @default.
- W36847873 hasConcept C107673813 @default.
- W36847873 hasConcept C11413529 @default.
- W36847873 hasConcept C119857082 @default.
- W36847873 hasConcept C124101348 @default.
- W36847873 hasConcept C150194340 @default.
- W36847873 hasConcept C154945302 @default.
- W36847873 hasConcept C185592680 @default.
- W36847873 hasConcept C207201462 @default.
- W36847873 hasConcept C26517878 @default.
- W36847873 hasConcept C28225019 @default.
- W36847873 hasConcept C33724603 @default.
- W36847873 hasConcept C38652104 @default.
- W36847873 hasConcept C41008148 @default.
- W36847873 hasConcept C55439883 @default.
- W36847873 hasConcept C55493867 @default.
- W36847873 hasConcept C67339327 @default.
- W36847873 hasConcept C70721500 @default.
- W36847873 hasConcept C82142266 @default.
- W36847873 hasConcept C86803240 @default.
- W36847873 hasConceptScore W36847873C104122410 @default.
- W36847873 hasConceptScore W36847873C104317684 @default.
- W36847873 hasConceptScore W36847873C107673813 @default.
- W36847873 hasConceptScore W36847873C11413529 @default.
- W36847873 hasConceptScore W36847873C119857082 @default.
- W36847873 hasConceptScore W36847873C124101348 @default.
- W36847873 hasConceptScore W36847873C150194340 @default.
- W36847873 hasConceptScore W36847873C154945302 @default.
- W36847873 hasConceptScore W36847873C185592680 @default.
- W36847873 hasConceptScore W36847873C207201462 @default.
- W36847873 hasConceptScore W36847873C26517878 @default.
- W36847873 hasConceptScore W36847873C28225019 @default.
- W36847873 hasConceptScore W36847873C33724603 @default.
- W36847873 hasConceptScore W36847873C38652104 @default.
- W36847873 hasConceptScore W36847873C41008148 @default.
- W36847873 hasConceptScore W36847873C55439883 @default.
- W36847873 hasConceptScore W36847873C55493867 @default.
- W36847873 hasConceptScore W36847873C67339327 @default.
- W36847873 hasConceptScore W36847873C70721500 @default.
- W36847873 hasConceptScore W36847873C82142266 @default.
- W36847873 hasConceptScore W36847873C86803240 @default.
- W36847873 hasLocation W368478731 @default.
- W36847873 hasOpenAccess W36847873 @default.
- W36847873 hasPrimaryLocation W368478731 @default.
- W36847873 hasRelatedWork W1502795220 @default.
- W36847873 hasRelatedWork W1631749243 @default.
- W36847873 hasRelatedWork W1965576512 @default.
- W36847873 hasRelatedWork W1966754468 @default.
- W36847873 hasRelatedWork W1977692160 @default.
- W36847873 hasRelatedWork W1989933576 @default.
- W36847873 hasRelatedWork W2042879528 @default.
- W36847873 hasRelatedWork W2074666941 @default.
- W36847873 hasRelatedWork W2104172901 @default.
- W36847873 hasRelatedWork W2121937120 @default.
- W36847873 hasRelatedWork W2124007391 @default.
- W36847873 hasRelatedWork W2148922078 @default.
- W36847873 hasRelatedWork W2291789640 @default.
- W36847873 hasRelatedWork W2732684237 @default.
- W36847873 hasRelatedWork W2894572168 @default.
- W36847873 hasRelatedWork W2950163725 @default.
- W36847873 hasRelatedWork W2964444983 @default.
- W36847873 hasRelatedWork W3013565065 @default.
- W36847873 hasRelatedWork W31420374 @default.
- W36847873 hasRelatedWork W3189268428 @default.
- W36847873 isParatext "false" @default.
- W36847873 isRetracted "false" @default.