Matches in SemOpenAlex for { <https://semopenalex.org/work/W37264563> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W37264563 endingPage "88" @default.
- W37264563 startingPage "71" @default.
- W37264563 abstract "This paper describes a hybrid model that combines machine learning with linguistic and statistical heuristics for integrating unknown word identification with Chinese word segmentation. The model consists of two major components: a tagging component that annotates each character in a Chinese sentence with a position-of-character (POC) tag that indicates its position in a word, and a merging component that transforms a POC-tagged character sequence into a word-segmented sentence. The tagging component uses a support vector machine (Vapnik, 1995) based tagger to produce an initial tagging of the text and a transformation-based tagger (Brill, 1995) to improve the initial tagging. In addition to the POC tags assigned to the characters, the merging component incorporates a number of linguistic and statistical heuristics to detect words with regular internal structures, recognize long words, and filter non-words. Experiments show that, without resorting to a separate unknown word identification mechanism, the model achieves an F-score of 95.0% for word segmentation and a competitive recall of 74.8% for unknown word identification." @default.
- W37264563 created "2016-06-24" @default.
- W37264563 creator A5083994661 @default.
- W37264563 date "2007-07-01" @default.
- W37264563 modified "2023-10-18" @default.
- W37264563 title "A Hybrid Model for Chinese Word Segmentation" @default.
- W37264563 cites W1218353304 @default.
- W37264563 cites W1518670641 @default.
- W37264563 cites W1558333962 @default.
- W37264563 cites W163537071 @default.
- W37264563 cites W2001831858 @default.
- W37264563 cites W2003031900 @default.
- W37264563 cites W2033295622 @default.
- W37264563 cites W2085606725 @default.
- W37264563 cites W2098594428 @default.
- W37264563 cites W2117400858 @default.
- W37264563 cites W2125838338 @default.
- W37264563 cites W2140016149 @default.
- W37264563 cites W2145216370 @default.
- W37264563 cites W2156909104 @default.
- W37264563 cites W2160735413 @default.
- W37264563 cites W2163377725 @default.
- W37264563 cites W2165345215 @default.
- W37264563 cites W2399720833 @default.
- W37264563 cites W2785522575 @default.
- W37264563 cites W2787080132 @default.
- W37264563 cites W2787481829 @default.
- W37264563 cites W2996160789 @default.
- W37264563 cites W3043710305 @default.
- W37264563 cites W61584101 @default.
- W37264563 cites W69683902 @default.
- W37264563 cites W740415 @default.
- W37264563 doi "https://doi.org/10.21248/jlcl.22.2007.90" @default.
- W37264563 hasPublicationYear "2007" @default.
- W37264563 type Work @default.
- W37264563 sameAs 37264563 @default.
- W37264563 citedByCount "1" @default.
- W37264563 countsByYear W372645632017 @default.
- W37264563 crossrefType "journal-article" @default.
- W37264563 hasAuthorship W37264563A5083994661 @default.
- W37264563 hasBestOaLocation W372645631 @default.
- W37264563 hasConcept C138885662 @default.
- W37264563 hasConcept C154945302 @default.
- W37264563 hasConcept C204321447 @default.
- W37264563 hasConcept C28490314 @default.
- W37264563 hasConcept C41008148 @default.
- W37264563 hasConcept C41895202 @default.
- W37264563 hasConcept C89600930 @default.
- W37264563 hasConcept C90805587 @default.
- W37264563 hasConceptScore W37264563C138885662 @default.
- W37264563 hasConceptScore W37264563C154945302 @default.
- W37264563 hasConceptScore W37264563C204321447 @default.
- W37264563 hasConceptScore W37264563C28490314 @default.
- W37264563 hasConceptScore W37264563C41008148 @default.
- W37264563 hasConceptScore W37264563C41895202 @default.
- W37264563 hasConceptScore W37264563C89600930 @default.
- W37264563 hasConceptScore W37264563C90805587 @default.
- W37264563 hasIssue "1" @default.
- W37264563 hasLocation W372645631 @default.
- W37264563 hasOpenAccess W37264563 @default.
- W37264563 hasPrimaryLocation W372645631 @default.
- W37264563 hasRelatedWork W1508636238 @default.
- W37264563 hasRelatedWork W2151447942 @default.
- W37264563 hasRelatedWork W2360025963 @default.
- W37264563 hasRelatedWork W2360785147 @default.
- W37264563 hasRelatedWork W2368651715 @default.
- W37264563 hasRelatedWork W2370299677 @default.
- W37264563 hasRelatedWork W2611614995 @default.
- W37264563 hasRelatedWork W2789919619 @default.
- W37264563 hasRelatedWork W2804033347 @default.
- W37264563 hasRelatedWork W2951061418 @default.
- W37264563 hasVolume "22" @default.
- W37264563 isParatext "false" @default.
- W37264563 isRetracted "false" @default.
- W37264563 magId "37264563" @default.
- W37264563 workType "article" @default.