Matches in SemOpenAlex for { <https://semopenalex.org/work/W37969552> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W37969552 endingPage "379" @default.
- W37969552 startingPage "374" @default.
- W37969552 abstract "This article describes an indirectly encoded evolutionary learning algorithm to train morphological neural networks. The indirect encoding method is an algorithm in which the training of the neural network is done by finding the solution without considering the exact connectivity of the network. Looking for the set of weights and architecture in a reduced search space, this simple, but powerful training algorithm is able to evolve to a feasible solution using up to three layers required to perform the pattern classification. This type of representation provides the necessary compactness required by large networks. The algorithm was tested using Iris Fisher data and a prototype was written using Matlab. Introduction Morphological Neural Networks (MNN) are a new type of neural networks described by Ritter, Sussner, and Beavers (Ritter and Sussner 1996), (Ritter and Sussner 1997), (Sussner 1998), and (Ritter and Beavers 1999). These types of neural networks replace the classical operations of multiplication and addition by addition and maximum or minimum operations. The maximum and minimum operations allow performing a nonlinear operation before the application of the activation or transfer function. MNN utilize algebraic lattice operations structure known as semiring ( , , , , ') ±∞ ∨ ∧ + + R , different from traditional neural networks that are based on the algebraic structure known as ring (R,+,×). The operations ∧ and ∨ denote minimum and maximum binary operations, respectively. Genetic Algorithms (Yao 1999) have proven to be effective to search for an optimal solution in very large, complex, and irregular search spaces such as the neural networks architectures. This article describes a method using genetic algorithms that can be used to train the morphological neural networks introduced by Ritter, Sussner and Beavers. The algorithm can be used to train up to three layers morphological perceptron architectures based on evolutionary computation, which are able to classify most traditional pattern classification problems. Copyright © 2004, American Association for Artificial Intelligence (www.aaai.org). All rights reserved. Morphological Neural Networks Morphological neural networks are a new type of neural network, based on lattice operations. The morphological neuron follows the mathematical model described by Equation 1, ( ) 1 n j ij i ij i f p r x w = ⎛ ⎞ ⋅ ∨ + ⎜ ⎟ ⎝ ⎠ (1) where ∨ is the maximum operator (or minimum operator ∧ can be used), xi is the i-th input value for the j-th neuron, wij denotes the synaptic weight associated between the i-th input and the j-th neuron, rij represents the inhibitory or excitatory pre-synaptic value between the i-th input and the j-th neuron, and pj represents the postsynaptic response of the j-th neuron. Both rij and pj can assume values of {+1, -1}. In addition, the morphological perceptron uses a special hard-limit transfer function, as shown in Equation 2: : 0,1 1 if x > 0 0 else f x → ⎧ → ⎨ ⎩ (2) Figure 1 shows a graphical representation of a two-layer morphological neural network." @default.
- W37969552 created "2016-06-24" @default.
- W37969552 creator A5026200020 @default.
- W37969552 creator A5035267416 @default.
- W37969552 date "2004-01-01" @default.
- W37969552 modified "2023-09-23" @default.
- W37969552 title "Indirect Encoding Evolutionary Learning Algorithm for the Multilayer Morphological Perceptron." @default.
- W37969552 cites W1966639131 @default.
- W37969552 cites W2104307771 @default.
- W37969552 cites W2124290836 @default.
- W37969552 cites W2296440556 @default.
- W37969552 hasPublicationYear "2004" @default.
- W37969552 type Work @default.
- W37969552 sameAs 37969552 @default.
- W37969552 citedByCount "0" @default.
- W37969552 crossrefType "proceedings-article" @default.
- W37969552 hasAuthorship W37969552A5026200020 @default.
- W37969552 hasAuthorship W37969552A5035267416 @default.
- W37969552 hasConcept C11413529 @default.
- W37969552 hasConcept C119857082 @default.
- W37969552 hasConcept C125411270 @default.
- W37969552 hasConcept C154945302 @default.
- W37969552 hasConcept C41008148 @default.
- W37969552 hasConcept C50644808 @default.
- W37969552 hasConcept C60908668 @default.
- W37969552 hasConcept C8880873 @default.
- W37969552 hasConceptScore W37969552C11413529 @default.
- W37969552 hasConceptScore W37969552C119857082 @default.
- W37969552 hasConceptScore W37969552C125411270 @default.
- W37969552 hasConceptScore W37969552C154945302 @default.
- W37969552 hasConceptScore W37969552C41008148 @default.
- W37969552 hasConceptScore W37969552C50644808 @default.
- W37969552 hasConceptScore W37969552C60908668 @default.
- W37969552 hasConceptScore W37969552C8880873 @default.
- W37969552 hasLocation W379695521 @default.
- W37969552 hasOpenAccess W37969552 @default.
- W37969552 hasPrimaryLocation W379695521 @default.
- W37969552 hasRelatedWork W1516806961 @default.
- W37969552 hasRelatedWork W1517718593 @default.
- W37969552 hasRelatedWork W1526960713 @default.
- W37969552 hasRelatedWork W1645469358 @default.
- W37969552 hasRelatedWork W1917797496 @default.
- W37969552 hasRelatedWork W1925854681 @default.
- W37969552 hasRelatedWork W1976208705 @default.
- W37969552 hasRelatedWork W1981009593 @default.
- W37969552 hasRelatedWork W1993888099 @default.
- W37969552 hasRelatedWork W2074219049 @default.
- W37969552 hasRelatedWork W2100380271 @default.
- W37969552 hasRelatedWork W2106057311 @default.
- W37969552 hasRelatedWork W2139983816 @default.
- W37969552 hasRelatedWork W2152280074 @default.
- W37969552 hasRelatedWork W2170689281 @default.
- W37969552 hasRelatedWork W2367525560 @default.
- W37969552 hasRelatedWork W2376274609 @default.
- W37969552 hasRelatedWork W2536186530 @default.
- W37969552 hasRelatedWork W586773592 @default.
- W37969552 hasRelatedWork W2926722495 @default.
- W37969552 isParatext "false" @default.
- W37969552 isRetracted "false" @default.
- W37969552 magId "37969552" @default.
- W37969552 workType "article" @default.