Matches in SemOpenAlex for { <https://semopenalex.org/work/W387952103> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W387952103 endingPage "1708" @default.
- W387952103 startingPage "1704" @default.
- W387952103 abstract "The big data challenge in bioinformatics is approaching. Data storage and processing, instead of experimental technologies, are becoming the slower and more costly part of research. Biological data typically have large size and a variety of structures. The ability to efficiently store and retrieve the data is important in bioinformatics research. Traditionally, large datasets are either stored as disk-based flat-files or in relational databases. These systems become more complicated to plan, maintain and adjust to big data applications as they follow rigid table schema and often lack scalability, e.g. for data aggregation. Meanwhile, non-relational databases (NoSQL) emerge to provide alternative, flexible and more scalable data stores. In this study, we aim to quantitatively compare the latencies of different data stores on storing and querying proteomics datasets. We show benchmarks for typical relational and non-relational systems for both, in-memory and disk-based configurations and compare them to a simple flat-file based approach. We will focus on the latencies of storing and querying proteomics mass spectrometry datasets and the actual space consumption inside the data stores. Experiments are carried out on a local desktop with medium-sized data, which is the typical experimental settings of individual bioinformatics researchers. Results show that there are significant latency differences among the considered data stores (up to 30 folds). In certain use cases, flat file system can achieve comparable performance with the data stores. Keywords-relational vs. non-relational databases, proteomics data, storing and querying latencies __________________________________________________*****_________________________________________________" @default.
- W387952103 created "2016-06-24" @default.
- W387952103 creator A5011617819 @default.
- W387952103 creator A5012229905 @default.
- W387952103 date "2015-01-01" @default.
- W387952103 modified "2023-09-27" @default.
- W387952103 title "Are NoSQL Data Stores Useful for Bioinformatics Researchers" @default.
- W387952103 cites W1531160357 @default.
- W387952103 cites W1599861493 @default.
- W387952103 cites W165700604 @default.
- W387952103 cites W172445582 @default.
- W387952103 cites W1984503480 @default.
- W387952103 cites W1991462891 @default.
- W387952103 cites W1997512351 @default.
- W387952103 cites W2026657534 @default.
- W387952103 cites W2039609250 @default.
- W387952103 cites W2041106018 @default.
- W387952103 cites W2046006386 @default.
- W387952103 cites W2054584570 @default.
- W387952103 cites W2081930221 @default.
- W387952103 cites W2084382782 @default.
- W387952103 cites W2084568010 @default.
- W387952103 cites W2117300383 @default.
- W387952103 cites W2140445011 @default.
- W387952103 cites W2143489492 @default.
- W387952103 cites W2337775442 @default.
- W387952103 doi "https://doi.org/10.17762/ijritcc2321-8169.1503176" @default.
- W387952103 hasPublicationYear "2015" @default.
- W387952103 type Work @default.
- W387952103 sameAs 387952103 @default.
- W387952103 citedByCount "3" @default.
- W387952103 countsByYear W3879521032015 @default.
- W387952103 countsByYear W3879521032016 @default.
- W387952103 countsByYear W3879521032018 @default.
- W387952103 crossrefType "journal-article" @default.
- W387952103 hasAuthorship W387952103A5011617819 @default.
- W387952103 hasAuthorship W387952103A5012229905 @default.
- W387952103 hasConcept C124101348 @default.
- W387952103 hasConcept C24394798 @default.
- W387952103 hasConcept C2779599972 @default.
- W387952103 hasConcept C41008148 @default.
- W387952103 hasConcept C48044578 @default.
- W387952103 hasConcept C5655090 @default.
- W387952103 hasConcept C75684735 @default.
- W387952103 hasConcept C77088390 @default.
- W387952103 hasConceptScore W387952103C124101348 @default.
- W387952103 hasConceptScore W387952103C24394798 @default.
- W387952103 hasConceptScore W387952103C2779599972 @default.
- W387952103 hasConceptScore W387952103C41008148 @default.
- W387952103 hasConceptScore W387952103C48044578 @default.
- W387952103 hasConceptScore W387952103C5655090 @default.
- W387952103 hasConceptScore W387952103C75684735 @default.
- W387952103 hasConceptScore W387952103C77088390 @default.
- W387952103 hasIssue "3" @default.
- W387952103 hasLocation W3879521031 @default.
- W387952103 hasOpenAccess W387952103 @default.
- W387952103 hasPrimaryLocation W3879521031 @default.
- W387952103 hasRelatedWork W1974170295 @default.
- W387952103 hasRelatedWork W2003561614 @default.
- W387952103 hasRelatedWork W2017589838 @default.
- W387952103 hasRelatedWork W2023493110 @default.
- W387952103 hasRelatedWork W2081447850 @default.
- W387952103 hasRelatedWork W2084568010 @default.
- W387952103 hasRelatedWork W2164436885 @default.
- W387952103 hasRelatedWork W2182494064 @default.
- W387952103 hasRelatedWork W2326096329 @default.
- W387952103 hasRelatedWork W2484037163 @default.
- W387952103 hasRelatedWork W2604509698 @default.
- W387952103 hasRelatedWork W2755980554 @default.
- W387952103 hasRelatedWork W2810458875 @default.
- W387952103 hasRelatedWork W2888995040 @default.
- W387952103 hasRelatedWork W2910876796 @default.
- W387952103 hasRelatedWork W2914357187 @default.
- W387952103 hasRelatedWork W2953014377 @default.
- W387952103 hasRelatedWork W2982021771 @default.
- W387952103 hasRelatedWork W3035613200 @default.
- W387952103 hasRelatedWork W86604534 @default.
- W387952103 hasVolume "3" @default.
- W387952103 isParatext "false" @default.
- W387952103 isRetracted "false" @default.
- W387952103 magId "387952103" @default.
- W387952103 workType "article" @default.