Matches in SemOpenAlex for { <https://semopenalex.org/work/W390146591> ?p ?o ?g. }
- W390146591 endingPage "56" @default.
- W390146591 startingPage "45" @default.
- W390146591 abstract "The incorporation of intensity, spatial, and topological information into large-scale multi-region segmentation has been a topic of ongoing research in medical image analysis. Multi-region segmentation problems, such as segmentation of brain structures, pose unique challenges in image segmentation in which regions may not have a defined intensity, spatial, or topological distinction, but rely on a combination of the three. We propose a novel framework within the Advanced segmentation tools (ASETS)(2), which combines large-scale Gaussian mixture models trained via Kohonen self-organizing maps, with deformable registration, and a convex max-flow optimization algorithm incorporating region topology as a hierarchy or tree. Our framework is validated on two publicly available neuroimaging datasets, the OASIS and MRBrainS13 databases, against the more conventional Potts model, achieving more accurate segmentations. Each component is accelerated using general-purpose programming on graphics processing Units to ensure computational feasibility." @default.
- W390146591 created "2016-06-24" @default.
- W390146591 creator A5002469859 @default.
- W390146591 creator A5010493622 @default.
- W390146591 creator A5023905379 @default.
- W390146591 creator A5030075105 @default.
- W390146591 creator A5069852479 @default.
- W390146591 creator A5076978450 @default.
- W390146591 creator A5081478676 @default.
- W390146591 date "2016-01-01" @default.
- W390146591 modified "2023-10-14" @default.
- W390146591 title "Hierarchical max-flow segmentation framework for multi-atlas segmentation with Kohonen self-organizing map based Gaussian mixture modeling" @default.
- W390146591 cites W1963847477 @default.
- W390146591 cites W1971594048 @default.
- W390146591 cites W1977706060 @default.
- W390146591 cites W1990517717 @default.
- W390146591 cites W2018017287 @default.
- W390146591 cites W2018662705 @default.
- W390146591 cites W2025362214 @default.
- W390146591 cites W2027600585 @default.
- W390146591 cites W2028094999 @default.
- W390146591 cites W2047440597 @default.
- W390146591 cites W2055455345 @default.
- W390146591 cites W2066839705 @default.
- W390146591 cites W2081163504 @default.
- W390146591 cites W2089954740 @default.
- W390146591 cites W2097810157 @default.
- W390146591 cites W2104276184 @default.
- W390146591 cites W2107956652 @default.
- W390146591 cites W2130686832 @default.
- W390146591 cites W2131036905 @default.
- W390146591 cites W2136573752 @default.
- W390146591 cites W2140502500 @default.
- W390146591 cites W2146837144 @default.
- W390146591 cites W2148157540 @default.
- W390146591 cites W2148820904 @default.
- W390146591 cites W2150534249 @default.
- W390146591 cites W2150606601 @default.
- W390146591 cites W2153060312 @default.
- W390146591 cites W2155298439 @default.
- W390146591 doi "https://doi.org/10.1016/j.media.2015.05.005" @default.
- W390146591 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26072170" @default.
- W390146591 hasPublicationYear "2016" @default.
- W390146591 type Work @default.
- W390146591 sameAs 390146591 @default.
- W390146591 citedByCount "28" @default.
- W390146591 countsByYear W3901465912015 @default.
- W390146591 countsByYear W3901465912016 @default.
- W390146591 countsByYear W3901465912017 @default.
- W390146591 countsByYear W3901465912018 @default.
- W390146591 countsByYear W3901465912019 @default.
- W390146591 countsByYear W3901465912020 @default.
- W390146591 countsByYear W3901465912022 @default.
- W390146591 crossrefType "journal-article" @default.
- W390146591 hasAuthorship W390146591A5002469859 @default.
- W390146591 hasAuthorship W390146591A5010493622 @default.
- W390146591 hasAuthorship W390146591A5023905379 @default.
- W390146591 hasAuthorship W390146591A5030075105 @default.
- W390146591 hasAuthorship W390146591A5069852479 @default.
- W390146591 hasAuthorship W390146591A5076978450 @default.
- W390146591 hasAuthorship W390146591A5081478676 @default.
- W390146591 hasConcept C111168008 @default.
- W390146591 hasConcept C124504099 @default.
- W390146591 hasConcept C151730666 @default.
- W390146591 hasConcept C153180895 @default.
- W390146591 hasConcept C154945302 @default.
- W390146591 hasConcept C25694479 @default.
- W390146591 hasConcept C2776673561 @default.
- W390146591 hasConcept C31972630 @default.
- W390146591 hasConcept C41008148 @default.
- W390146591 hasConcept C42314347 @default.
- W390146591 hasConcept C50644808 @default.
- W390146591 hasConcept C61224824 @default.
- W390146591 hasConcept C65885262 @default.
- W390146591 hasConcept C86803240 @default.
- W390146591 hasConcept C89600930 @default.
- W390146591 hasConceptScore W390146591C111168008 @default.
- W390146591 hasConceptScore W390146591C124504099 @default.
- W390146591 hasConceptScore W390146591C151730666 @default.
- W390146591 hasConceptScore W390146591C153180895 @default.
- W390146591 hasConceptScore W390146591C154945302 @default.
- W390146591 hasConceptScore W390146591C25694479 @default.
- W390146591 hasConceptScore W390146591C2776673561 @default.
- W390146591 hasConceptScore W390146591C31972630 @default.
- W390146591 hasConceptScore W390146591C41008148 @default.
- W390146591 hasConceptScore W390146591C42314347 @default.
- W390146591 hasConceptScore W390146591C50644808 @default.
- W390146591 hasConceptScore W390146591C61224824 @default.
- W390146591 hasConceptScore W390146591C65885262 @default.
- W390146591 hasConceptScore W390146591C86803240 @default.
- W390146591 hasConceptScore W390146591C89600930 @default.
- W390146591 hasFunder F4320334506 @default.
- W390146591 hasLocation W3901465911 @default.
- W390146591 hasLocation W3901465912 @default.
- W390146591 hasOpenAccess W390146591 @default.
- W390146591 hasPrimaryLocation W3901465911 @default.
- W390146591 hasRelatedWork W1558398159 @default.
- W390146591 hasRelatedWork W1601176293 @default.