Matches in SemOpenAlex for { <https://semopenalex.org/work/W39134676> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W39134676 abstract "Processing high dimensional data arises in a number of real world applications such as financial data analysis, hyperspectral imagery, and video surveillance. The data are organized in a rectangular array with n rows and p columns, where the rows represent different measurements and the columns represent different features. High dimensional statistical inference studies signal detection and estimation problems in the scenario when n << p. The main challenge of high dimensional statistical inference is the curse of dimensionality phenomena. The curse of dimensionality leads to intractability of accurately approximating high-dimensional density function. Nevertheless, data samples in many high dimensional problems come from an underlying low dimensional space or manifold. This limits the degrees of freedom (DOF) in the ambient space. This structure can be exploited for statistical inference. Another feature of high dimensional data is concentration of measure phenomena, which states that certain smooth random functions in high dimensional space are nearly constant. The philosophy is that under mild conditions it is easy to predict the behavior of high dimensional data. In this thesis, we exploit the DOF structure in detection and estimation of high dimensional data together with concentration of measure inequalities to obtain new results. In particular we consider the sparsity model for compressed sensing, the joint sparse and Markov structure for blind deconvolution, the manifold model for outlier detection and the temporally local anomaly structure for time-series anomaly detection. We present a linear programming solution for signal support recovery from noisy measurements that leverages sparse constraint. We simultaneously reconstruct the unknown autoregressive filter and the driving process in light of the joint structure on sparsity and Markov property. We develop novel non-parametric adaptive anomaly detection algorithm for high dimensional data that can adapt to local sparse manifold structure. We develop a clustering algorithm that accounts for highly unbalanced proximal and complex shaped clusters based on the scheme of reweighting the graph edge similarity. We propose a new paradigm for time-series anomaly detection that exploits the local anomaly structure. Our analysis in compressed sensing shows that the achievable bound in terms of SNR, the number of measurements, and admissible sparsity level of a linear programming solution matches the optimal information-theoretic in an order-wise sense. Our result in anomaly detection suggests that estimating high dimensional level-set can be avoided by computing a sufficient p-value statistic. The resulting anomaly detector is asymptotically uniformly most powerful against any uniformly mixing density. We also provide a generalization of this p-value statistic in time-series anomaly detection with false alarm control." @default.
- W39134676 created "2016-06-24" @default.
- W39134676 creator A5048704387 @default.
- W39134676 creator A5080989473 @default.
- W39134676 date "2011-01-01" @default.
- W39134676 modified "2023-09-26" @default.
- W39134676 title "Role of sparsity in high dimensional signal detection and estimation" @default.
- W39134676 hasPublicationYear "2011" @default.
- W39134676 type Work @default.
- W39134676 sameAs 39134676 @default.
- W39134676 citedByCount "0" @default.
- W39134676 crossrefType "journal-article" @default.
- W39134676 hasAuthorship W39134676A5048704387 @default.
- W39134676 hasAuthorship W39134676A5080989473 @default.
- W39134676 hasConcept C105795698 @default.
- W39134676 hasConcept C111030470 @default.
- W39134676 hasConcept C11413529 @default.
- W39134676 hasConcept C124851039 @default.
- W39134676 hasConcept C134261354 @default.
- W39134676 hasConcept C153180895 @default.
- W39134676 hasConcept C154945302 @default.
- W39134676 hasConcept C159877910 @default.
- W39134676 hasConcept C33923547 @default.
- W39134676 hasConcept C41008148 @default.
- W39134676 hasConcept C70518039 @default.
- W39134676 hasConcept C739882 @default.
- W39134676 hasConceptScore W39134676C105795698 @default.
- W39134676 hasConceptScore W39134676C111030470 @default.
- W39134676 hasConceptScore W39134676C11413529 @default.
- W39134676 hasConceptScore W39134676C124851039 @default.
- W39134676 hasConceptScore W39134676C134261354 @default.
- W39134676 hasConceptScore W39134676C153180895 @default.
- W39134676 hasConceptScore W39134676C154945302 @default.
- W39134676 hasConceptScore W39134676C159877910 @default.
- W39134676 hasConceptScore W39134676C33923547 @default.
- W39134676 hasConceptScore W39134676C41008148 @default.
- W39134676 hasConceptScore W39134676C70518039 @default.
- W39134676 hasConceptScore W39134676C739882 @default.
- W39134676 hasLocation W391346761 @default.
- W39134676 hasOpenAccess W39134676 @default.
- W39134676 hasPrimaryLocation W391346761 @default.
- W39134676 hasRelatedWork W1771150291 @default.
- W39134676 hasRelatedWork W2061375390 @default.
- W39134676 hasRelatedWork W2112453619 @default.
- W39134676 hasRelatedWork W2188121836 @default.
- W39134676 hasRelatedWork W2291599777 @default.
- W39134676 hasRelatedWork W2736310305 @default.
- W39134676 hasRelatedWork W2766336888 @default.
- W39134676 hasRelatedWork W2888103878 @default.
- W39134676 hasRelatedWork W2891041063 @default.
- W39134676 hasRelatedWork W2949175701 @default.
- W39134676 hasRelatedWork W2949496232 @default.
- W39134676 hasRelatedWork W2950810853 @default.
- W39134676 hasRelatedWork W2951447401 @default.
- W39134676 hasRelatedWork W2952040794 @default.
- W39134676 hasRelatedWork W2962741457 @default.
- W39134676 hasRelatedWork W2964081564 @default.
- W39134676 hasRelatedWork W3000544422 @default.
- W39134676 hasRelatedWork W3158960678 @default.
- W39134676 hasRelatedWork W3172956674 @default.
- W39134676 hasRelatedWork W586868221 @default.
- W39134676 isParatext "false" @default.
- W39134676 isRetracted "false" @default.
- W39134676 magId "39134676" @default.
- W39134676 workType "article" @default.