Matches in SemOpenAlex for { <https://semopenalex.org/work/W39149040> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W39149040 abstract "Clustering is to divide given data and then, automatically find out the meanings hidden in the data. It analyzes data, which are difficult for people to check in detail, and then, makes several clusters consisting of data with similar characteristics. Clustering, which is used in various fields, is automatically done without human interference, but the number of clusters should be decided by men in advance. The number of clusters is a very important element because the result of clustering can be different, depending on the number of clusters. Therefore, this paper proposed a method of deciding the number of clusters, which is projecting the center of a cluster on the two-dimensional plane by use of Multi-Dimensional Scaling, and then, combining the clusters. As a result of experimenting this method with real data, it was found that clustering performance became better. in-depth analysis by laying up the documents with similar characteristics, not by accurately separating all the documents. Classification needs no more worrisome because the subjects to be classified are clear and the number of classifications is same as that of the subjects to be classified. Clustering allows a user to set up the number of clusters and its result has its own meaning. However, from the viewpoint of general users, it may be felt inconvenient that the result of clustering depends on the number of clusters and that the best optimal number of clusters can be obtained after users test with various numbers of clusters. Accordingly, a method to automatically decide the number of clusters is necessary, but there is still a lack of the researches compared with the researches of the clustering algorithm. People want to get a result in a very short time in information retrieval system. Besides the clustering performance is superior, it will be inconvenient system if the clustering takes too long time. Shrinking the number of clusters is aim to enhance the clustering performance, but if it takes too long time, it will be meaningless task after all. Therefore, this paper studied the method of automatically deciding the number of clusters without users' repetitive tests and without giving great influence on the clustering time. This paper is composed of: descriptions of the existing techniques of deciding the number of clusters (chapter 2); explanation of how to reduce the number of clusters (chapter 3); usefulness of the method proposed in chapter 3 through analysis of test results (chapter 4); and suggestions for future studies (chapter 5)." @default.
- W39149040 created "2016-06-24" @default.
- W39149040 creator A5038651872 @default.
- W39149040 creator A5072298539 @default.
- W39149040 creator A5075241973 @default.
- W39149040 date "2006-01-01" @default.
- W39149040 modified "2023-09-23" @default.
- W39149040 title "Shrinking Number of Clusters by Multi-Dimensional Scaling." @default.
- W39149040 cites W140312209 @default.
- W39149040 cites W1577289782 @default.
- W39149040 cites W1585610988 @default.
- W39149040 cites W1955600018 @default.
- W39149040 cites W1971784203 @default.
- W39149040 cites W1996764654 @default.
- W39149040 cites W2005948084 @default.
- W39149040 cites W2064742743 @default.
- W39149040 cites W2098515641 @default.
- W39149040 cites W2126636333 @default.
- W39149040 cites W2495084345 @default.
- W39149040 cites W2999729612 @default.
- W39149040 hasPublicationYear "2006" @default.
- W39149040 type Work @default.
- W39149040 sameAs 39149040 @default.
- W39149040 citedByCount "0" @default.
- W39149040 crossrefType "proceedings-article" @default.
- W39149040 hasAuthorship W39149040A5038651872 @default.
- W39149040 hasAuthorship W39149040A5072298539 @default.
- W39149040 hasAuthorship W39149040A5075241973 @default.
- W39149040 hasConcept C119857082 @default.
- W39149040 hasConcept C124101348 @default.
- W39149040 hasConcept C149872217 @default.
- W39149040 hasConcept C153180895 @default.
- W39149040 hasConcept C154945302 @default.
- W39149040 hasConcept C164866538 @default.
- W39149040 hasConcept C177264268 @default.
- W39149040 hasConcept C199360897 @default.
- W39149040 hasConcept C22648726 @default.
- W39149040 hasConcept C23822008 @default.
- W39149040 hasConcept C2524010 @default.
- W39149040 hasConcept C33704608 @default.
- W39149040 hasConcept C33923547 @default.
- W39149040 hasConcept C41008148 @default.
- W39149040 hasConcept C73555534 @default.
- W39149040 hasConcept C91682802 @default.
- W39149040 hasConcept C94641424 @default.
- W39149040 hasConcept C99844830 @default.
- W39149040 hasConceptScore W39149040C119857082 @default.
- W39149040 hasConceptScore W39149040C124101348 @default.
- W39149040 hasConceptScore W39149040C149872217 @default.
- W39149040 hasConceptScore W39149040C153180895 @default.
- W39149040 hasConceptScore W39149040C154945302 @default.
- W39149040 hasConceptScore W39149040C164866538 @default.
- W39149040 hasConceptScore W39149040C177264268 @default.
- W39149040 hasConceptScore W39149040C199360897 @default.
- W39149040 hasConceptScore W39149040C22648726 @default.
- W39149040 hasConceptScore W39149040C23822008 @default.
- W39149040 hasConceptScore W39149040C2524010 @default.
- W39149040 hasConceptScore W39149040C33704608 @default.
- W39149040 hasConceptScore W39149040C33923547 @default.
- W39149040 hasConceptScore W39149040C41008148 @default.
- W39149040 hasConceptScore W39149040C73555534 @default.
- W39149040 hasConceptScore W39149040C91682802 @default.
- W39149040 hasConceptScore W39149040C94641424 @default.
- W39149040 hasConceptScore W39149040C99844830 @default.
- W39149040 hasLocation W391490401 @default.
- W39149040 hasOpenAccess W39149040 @default.
- W39149040 hasPrimaryLocation W391490401 @default.
- W39149040 hasRelatedWork W135774226 @default.
- W39149040 hasRelatedWork W1497180403 @default.
- W39149040 hasRelatedWork W1907312728 @default.
- W39149040 hasRelatedWork W2010194706 @default.
- W39149040 hasRelatedWork W2074935129 @default.
- W39149040 hasRelatedWork W2075458659 @default.
- W39149040 hasRelatedWork W2086365393 @default.
- W39149040 hasRelatedWork W2098980230 @default.
- W39149040 hasRelatedWork W2105111202 @default.
- W39149040 hasRelatedWork W2123987362 @default.
- W39149040 hasRelatedWork W2129641872 @default.
- W39149040 hasRelatedWork W2141352133 @default.
- W39149040 hasRelatedWork W2141884673 @default.
- W39149040 hasRelatedWork W2143120882 @default.
- W39149040 hasRelatedWork W2157445198 @default.
- W39149040 hasRelatedWork W2168614937 @default.
- W39149040 hasRelatedWork W2540271855 @default.
- W39149040 hasRelatedWork W2625277315 @default.
- W39149040 hasRelatedWork W2917123910 @default.
- W39149040 hasRelatedWork W3034236583 @default.
- W39149040 isParatext "false" @default.
- W39149040 isRetracted "false" @default.
- W39149040 magId "39149040" @default.
- W39149040 workType "article" @default.