Matches in SemOpenAlex for { <https://semopenalex.org/work/W391570308> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W391570308 abstract "The thesis consists of seven papers.In Paper I, II, III, IV and V, we study homological invariants of monomial rings — rings of the form R = k[x1, . . . , xn]/I where I is a monomial ideal in the polynomial ring k[x1, . . . , xn] over a field k — and we study combinatorial aspects of these invariants. Specifically, we study the Poincare series PR(z), the homotopy Lie algebra of the Koszul complex π*(KR), and the following question: When is R a Golod ring? We find a formula for the Poincare series in terms of homology groups of lower intervals in a finite lattice KI , and we relate the Golod property of R with the Cohen-Macaulay property of KI . A description of the homotopy Lie algebra π*(KR) in terms of the cohomology of a certain combinatorially defined ∞-algebra is given, and it is used to prove that R is Golod if and only if the homology algebra H*(KR) has trivial multiplication. We prove that a certain combinatorial criterion, called the strong gcd-condition, implies Golodness of R and we relate this criterion to (non-pure) shellability of simplicial complexes.In Paper VI, we lay the foundations of a cohomology theory for associative algebras, called Cofinite Hochschild cohomology, which may be seen as a continuous version of Hochschild cohomology. We prove that under reasonable hypotheses, the natural map from cofinite cohomology to Hochschild cohomology is an isomorphism for commutative noetherian algebras.In Paper VII, we extend homological perturbation theory of chain complexes to encompass (co)algebra structures over (co)operads. This is done by ‘thickening’ the category of (co)algebras over a (co)operad, and the functorial properties of the thick categories are carefully worked out. As an application, this theory provides means of proving transfer theorems for algebras over a large class of operads." @default.
- W391570308 created "2016-06-24" @default.
- W391570308 creator A5079117563 @default.
- W391570308 date "2008-01-01" @default.
- W391570308 modified "2023-09-23" @default.
- W391570308 title "Homological perturbation theory for algebras over operads and coalgebras over cooperads" @default.
- W391570308 cites W1503728061 @default.
- W391570308 cites W1507692549 @default.
- W391570308 cites W1514363947 @default.
- W391570308 cites W1536410824 @default.
- W391570308 cites W1542392603 @default.
- W391570308 cites W1556133719 @default.
- W391570308 cites W1562014828 @default.
- W391570308 cites W1865108252 @default.
- W391570308 cites W1977408488 @default.
- W391570308 cites W2055484081 @default.
- W391570308 cites W2071417479 @default.
- W391570308 cites W2079772887 @default.
- W391570308 cites W2130762722 @default.
- W391570308 cites W2145021384 @default.
- W391570308 cites W2163452557 @default.
- W391570308 cites W2963599377 @default.
- W391570308 hasPublicationYear "2008" @default.
- W391570308 type Work @default.
- W391570308 sameAs 391570308 @default.
- W391570308 citedByCount "0" @default.
- W391570308 crossrefType "journal-article" @default.
- W391570308 hasAuthorship W391570308A5079117563 @default.
- W391570308 hasConcept C11252640 @default.
- W391570308 hasConcept C134306372 @default.
- W391570308 hasConcept C136119220 @default.
- W391570308 hasConcept C183778304 @default.
- W391570308 hasConcept C202444582 @default.
- W391570308 hasConcept C33923547 @default.
- W391570308 hasConcept C78606066 @default.
- W391570308 hasConcept C90119067 @default.
- W391570308 hasConcept C9485509 @default.
- W391570308 hasConceptScore W391570308C11252640 @default.
- W391570308 hasConceptScore W391570308C134306372 @default.
- W391570308 hasConceptScore W391570308C136119220 @default.
- W391570308 hasConceptScore W391570308C183778304 @default.
- W391570308 hasConceptScore W391570308C202444582 @default.
- W391570308 hasConceptScore W391570308C33923547 @default.
- W391570308 hasConceptScore W391570308C78606066 @default.
- W391570308 hasConceptScore W391570308C90119067 @default.
- W391570308 hasConceptScore W391570308C9485509 @default.
- W391570308 hasLocation W3915703081 @default.
- W391570308 hasOpenAccess W391570308 @default.
- W391570308 hasPrimaryLocation W3915703081 @default.
- W391570308 hasRelatedWork W120601287 @default.
- W391570308 hasRelatedWork W1513933643 @default.
- W391570308 hasRelatedWork W1989603172 @default.
- W391570308 hasRelatedWork W2017842667 @default.
- W391570308 hasRelatedWork W2040842469 @default.
- W391570308 hasRelatedWork W2146821519 @default.
- W391570308 hasRelatedWork W2169445645 @default.
- W391570308 hasRelatedWork W2281887807 @default.
- W391570308 hasRelatedWork W2890970281 @default.
- W391570308 hasRelatedWork W2955264838 @default.
- W391570308 hasRelatedWork W2963219493 @default.
- W391570308 hasRelatedWork W2964164656 @default.
- W391570308 hasRelatedWork W3046645029 @default.
- W391570308 hasRelatedWork W3099262437 @default.
- W391570308 hasRelatedWork W3204867224 @default.
- W391570308 hasRelatedWork W632903037 @default.
- W391570308 hasRelatedWork W658966625 @default.
- W391570308 hasRelatedWork W87338017 @default.
- W391570308 hasRelatedWork W1674630831 @default.
- W391570308 hasRelatedWork W2292969384 @default.
- W391570308 isParatext "false" @default.
- W391570308 isRetracted "false" @default.
- W391570308 magId "391570308" @default.
- W391570308 workType "article" @default.