Matches in SemOpenAlex for { <https://semopenalex.org/work/W39348908> ?p ?o ?g. }
- W39348908 abstract "Emulsions are a vital part of many products in everyday use, such as foods, cosmetics, and even construction materials. Membrane emulsification is a technique which has been used to produce emulsions in a manner contrary to the traditional methods where droplets are broken and re-broken to make smaller and smaller droplets, and instead each droplet is individually formed at a pore on the surface of the membrane. This research compared two of the most favoured membrane emulsification techniques; cross-flow and rotating membrane emulsification. Two systems were built for producing emulsions using tubular microporous membranes, made from shirasu porous glass, polymer, ceramic and stainless steel. One device employed a cross-flow system providing shear to detach the nascent droplets from the membrane pores whilst the other system employed a rotated membrane to produce both shear and potentially centripetal force at the membrane surface. Both systems were used to create emulsions, and the effects of various settings of the systems were investigated. A direct comparison between cross flow membrane emulsification and rotating membrane emulsification were achieved for the first time, as the same membranes were available for both systems. The modular interchangeable nature of the membranes in the systems also allowed direct comparison between the various different membrane types tested. The distinct differences in the structure and materials of the membranes tested was compared, and its effects elucidated, as the different membrane types each showed different advantages and disadvantages when producing droplets. It was shown that the membrane pore size is a major factor on the size of the droplets produced, and the membrane pore size distribution span affects the size distribution span of the droplets. Increasing the emulsifier concentration decreases droplet size, as does increasing the shear force applied to the forming droplets, either by increasing the cross-flow velocity or the rotation rate. Increasing the pressure applied to force the dispersed phase through the membrane increases flux rate, but also increases droplet size slightly. The relative viscosity of the two phases being emulsified has an effect on the droplet size; increasing the continuous phase viscosity decreases droplet size, and increasing dispersed phase viscosity increases droplet size. The systems performed equally well making water in oil, as oil in water emulsions. Although the rotating membrane system produces lower shear rates than the cross-flow system, similar droplet diameters were produced, implying that detachment is enhanced by the rotation, showing a clear advantage to rotating membrane emulsification. The systems were also used to produce various more complex particles, including double emulsions and gelled beads, and the level of control over the phases afforded by membrane emulsification was shown to be an advantage in the production of such microstructures." @default.
- W39348908 created "2016-06-24" @default.
- W39348908 creator A5000548699 @default.
- W39348908 date "2011-12-01" @default.
- W39348908 modified "2023-09-26" @default.
- W39348908 title "Controlled emulsification using microporous membranes" @default.
- W39348908 cites W1965047821 @default.
- W39348908 cites W1971196020 @default.
- W39348908 cites W1972843691 @default.
- W39348908 cites W1974406091 @default.
- W39348908 cites W1979548358 @default.
- W39348908 cites W1979842742 @default.
- W39348908 cites W1987690315 @default.
- W39348908 cites W1991868494 @default.
- W39348908 cites W1993019549 @default.
- W39348908 cites W1994065971 @default.
- W39348908 cites W1995151199 @default.
- W39348908 cites W1998721223 @default.
- W39348908 cites W2002562326 @default.
- W39348908 cites W2007140197 @default.
- W39348908 cites W2012534647 @default.
- W39348908 cites W2015327103 @default.
- W39348908 cites W2019530142 @default.
- W39348908 cites W2019783005 @default.
- W39348908 cites W2025720591 @default.
- W39348908 cites W2029341389 @default.
- W39348908 cites W2031973177 @default.
- W39348908 cites W2032752519 @default.
- W39348908 cites W2035806913 @default.
- W39348908 cites W2037160264 @default.
- W39348908 cites W2038558453 @default.
- W39348908 cites W2043804764 @default.
- W39348908 cites W2050265278 @default.
- W39348908 cites W2061671467 @default.
- W39348908 cites W2065203366 @default.
- W39348908 cites W2066801676 @default.
- W39348908 cites W2075617773 @default.
- W39348908 cites W2079045030 @default.
- W39348908 cites W2083298830 @default.
- W39348908 cites W2088774873 @default.
- W39348908 cites W2088835339 @default.
- W39348908 cites W2090168937 @default.
- W39348908 cites W2095109017 @default.
- W39348908 cites W2114116123 @default.
- W39348908 cites W2154274828 @default.
- W39348908 cites W2218772527 @default.
- W39348908 cites W2330384829 @default.
- W39348908 cites W2537280978 @default.
- W39348908 cites W419316776 @default.
- W39348908 cites W2083545879 @default.
- W39348908 cites W620118800 @default.
- W39348908 hasPublicationYear "2011" @default.
- W39348908 type Work @default.
- W39348908 sameAs 39348908 @default.
- W39348908 citedByCount "1" @default.
- W39348908 countsByYear W393489082016 @default.
- W39348908 crossrefType "dissertation" @default.
- W39348908 hasAuthorship W39348908A5000548699 @default.
- W39348908 hasConcept C127413603 @default.
- W39348908 hasConcept C159151202 @default.
- W39348908 hasConcept C159985019 @default.
- W39348908 hasConcept C171250308 @default.
- W39348908 hasConcept C185592680 @default.
- W39348908 hasConcept C192562407 @default.
- W39348908 hasConcept C2776317363 @default.
- W39348908 hasConcept C2778123984 @default.
- W39348908 hasConcept C41625074 @default.
- W39348908 hasConcept C42360764 @default.
- W39348908 hasConcept C55493867 @default.
- W39348908 hasConcept C6648577 @default.
- W39348908 hasConcept C86381522 @default.
- W39348908 hasConceptScore W39348908C127413603 @default.
- W39348908 hasConceptScore W39348908C159151202 @default.
- W39348908 hasConceptScore W39348908C159985019 @default.
- W39348908 hasConceptScore W39348908C171250308 @default.
- W39348908 hasConceptScore W39348908C185592680 @default.
- W39348908 hasConceptScore W39348908C192562407 @default.
- W39348908 hasConceptScore W39348908C2776317363 @default.
- W39348908 hasConceptScore W39348908C2778123984 @default.
- W39348908 hasConceptScore W39348908C41625074 @default.
- W39348908 hasConceptScore W39348908C42360764 @default.
- W39348908 hasConceptScore W39348908C55493867 @default.
- W39348908 hasConceptScore W39348908C6648577 @default.
- W39348908 hasConceptScore W39348908C86381522 @default.
- W39348908 hasLocation W393489081 @default.
- W39348908 hasOpenAccess W39348908 @default.
- W39348908 hasPrimaryLocation W393489081 @default.
- W39348908 hasRelatedWork W129447391 @default.
- W39348908 hasRelatedWork W134276570 @default.
- W39348908 hasRelatedWork W1730273429 @default.
- W39348908 hasRelatedWork W174517157 @default.
- W39348908 hasRelatedWork W1979878622 @default.
- W39348908 hasRelatedWork W1988330861 @default.
- W39348908 hasRelatedWork W2014871554 @default.
- W39348908 hasRelatedWork W2029341389 @default.
- W39348908 hasRelatedWork W2037160264 @default.
- W39348908 hasRelatedWork W2052893156 @default.
- W39348908 hasRelatedWork W2060294139 @default.
- W39348908 hasRelatedWork W2069178418 @default.
- W39348908 hasRelatedWork W2096806659 @default.