Matches in SemOpenAlex for { <https://semopenalex.org/work/W396419238> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W396419238 abstract "Introduction. Investigation of combustion in a porous medium using one-dimensional models makes it possible to reveal the basic regularities of this process and to evaluate such important parameters as the maximum temperature and the velocity of the combustion front. However all real technical devices operate under conditions that are rather far from direct application of one-dimensional models. Even in experiments on the propagation of combustion waves in cylindrical tubes with a porous charge [1 ], regimes with a combustion front tilted to the tube axis of-ten occurred. Approximate integration of the one-dimensional one-temperature problem of the propagation of a combustion wave with a single-stage Arrhenius-type kinetics of combustion permits derivation of analytical expressions for determining the maximum temperature and the velocity of the combustion wave. Dependences of this type were obtained by different authors, for example, in [2-4 ]. These expressions are basically distinguished by the method of integrating the Arrhenius exponent. In the present work, we employ the results of the solution proposed in [4 ], in particular, the formula for determining the area of the combustion front of a steady-state (a zero-velocity wave) solution with a prescribed mass flow rate of the gas. The analytical solutions are based on a one-dimensional approximation, the assumption of homogeneity of the porous medium, and other simplifications. In structures with a variable cross section and inhomogeneous charges and with allowance for the actual thermophysical properties, gas filtration can be substantially non-one-dimensional. In-this case, the application of non-one-dimensional numerical models is required. The basic effects of non-one-dimensionality can be analyzed using two-dimensional models. With a two-dimensional description of filtration combustion in a one-temperature approximation we can check and refine the applicability limits for one-dimensional analytical approaches. Given below is a variant of a two-dimensional one-temperature model that was implemented in the form of a computer code. Using it we compared numerical solutions with the analytical evaluation from [4 ] and demonstrated some features associated with two-dimensional effects. Formulation of the Problem and the Method of Solution. The system of equations formulated below describes the following physical processes: gas filtration through a porous medium; convective, conductive, and radiative transfers of heat; energy release in fuel combustion described using the Arrhenius approximation. The gaseous medium is considered in the ideal-gas approximation. As a generalized filtration law, we used the Darcy equation in the form proposed by Forchheimer [5]" @default.
- W396419238 created "2016-06-24" @default.
- W396419238 creator A5017869323 @default.
- W396419238 creator A5060151778 @default.
- W396419238 date "1998-01-01" @default.
- W396419238 modified "2023-09-23" @default.
- W396419238 title "Filtration combustion with a stationary/front in porous charges is modeled within the/framework of a one- temperature approximation. The results of numerical calculations are compared with an analytical evaluation/for the quasi-one-dimensional case of a tube of variable cross section." @default.
- W396419238 cites W1985586910 @default.
- W396419238 cites W2011450613 @default.
- W396419238 cites W2019128293 @default.
- W396419238 hasPublicationYear "1998" @default.
- W396419238 type Work @default.
- W396419238 sameAs 396419238 @default.
- W396419238 citedByCount "0" @default.
- W396419238 crossrefType "journal-article" @default.
- W396419238 hasAuthorship W396419238A5017869323 @default.
- W396419238 hasAuthorship W396419238A5060151778 @default.
- W396419238 hasConcept C105569014 @default.
- W396419238 hasConcept C105923489 @default.
- W396419238 hasConcept C121332964 @default.
- W396419238 hasConcept C148898269 @default.
- W396419238 hasConcept C178790620 @default.
- W396419238 hasConcept C185592680 @default.
- W396419238 hasConcept C18762648 @default.
- W396419238 hasConcept C192562407 @default.
- W396419238 hasConcept C57879066 @default.
- W396419238 hasConcept C6648577 @default.
- W396419238 hasConcept C74650414 @default.
- W396419238 hasConcept C86183883 @default.
- W396419238 hasConcept C97355855 @default.
- W396419238 hasConceptScore W396419238C105569014 @default.
- W396419238 hasConceptScore W396419238C105923489 @default.
- W396419238 hasConceptScore W396419238C121332964 @default.
- W396419238 hasConceptScore W396419238C148898269 @default.
- W396419238 hasConceptScore W396419238C178790620 @default.
- W396419238 hasConceptScore W396419238C185592680 @default.
- W396419238 hasConceptScore W396419238C18762648 @default.
- W396419238 hasConceptScore W396419238C192562407 @default.
- W396419238 hasConceptScore W396419238C57879066 @default.
- W396419238 hasConceptScore W396419238C6648577 @default.
- W396419238 hasConceptScore W396419238C74650414 @default.
- W396419238 hasConceptScore W396419238C86183883 @default.
- W396419238 hasConceptScore W396419238C97355855 @default.
- W396419238 hasLocation W3964192381 @default.
- W396419238 hasOpenAccess W396419238 @default.
- W396419238 hasPrimaryLocation W3964192381 @default.
- W396419238 hasRelatedWork W1570412019 @default.
- W396419238 hasRelatedWork W2013118415 @default.
- W396419238 hasRelatedWork W2147769379 @default.
- W396419238 hasRelatedWork W2291095374 @default.
- W396419238 hasRelatedWork W2328009500 @default.
- W396419238 hasRelatedWork W2363954153 @default.
- W396419238 hasRelatedWork W2563123813 @default.
- W396419238 hasRelatedWork W2739578454 @default.
- W396419238 hasRelatedWork W2901037697 @default.
- W396419238 hasRelatedWork W2902438820 @default.
- W396419238 hasRelatedWork W2910832213 @default.
- W396419238 hasRelatedWork W2990664378 @default.
- W396419238 hasRelatedWork W3033152285 @default.
- W396419238 hasRelatedWork W3081816827 @default.
- W396419238 hasRelatedWork W3100085615 @default.
- W396419238 hasRelatedWork W3110720908 @default.
- W396419238 hasRelatedWork W3113616558 @default.
- W396419238 hasRelatedWork W3144556634 @default.
- W396419238 hasRelatedWork W177017794 @default.
- W396419238 hasRelatedWork W2412974009 @default.
- W396419238 isParatext "false" @default.
- W396419238 isRetracted "false" @default.
- W396419238 magId "396419238" @default.
- W396419238 workType "article" @default.