Matches in SemOpenAlex for { <https://semopenalex.org/work/W397795294> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W397795294 abstract "As typical examples for nonlinear dynamical systems, the logistic maps mapping x to cx(1 − x) with x is in [0,1] and c is a constant in [0,4] have been extensively studied. Bhattacharya and Rao (1993) studied the case that c is a random variable rather than a constant. In this case, each of the logistic maps above defines a Markov Chain on [0,1]. In this dissertation, we give some sufficient conditions for the existence of an invariant probability on (0,1) and some sufficient conditions for the nonexistence of invariant probability measures on (0,1) as well. When there exists an invariant probability on (0,1), we study the problem of the uniqueness of invariant probability measure on (0,1). We give some sufficient conditions for the invariant probability measure to be unique. We also provide an example where c takes only two values such that there exist two distinct invariant probability distributions supported by the open interval (0,1). This settles a question raised by R. N. Bhattacharya. In this dissertation, we also study the resource bounded measure that was introduced by Jack Lutz in 1992. It is shown that under Jack Lutz's Strong Hypothesis, for any integer k that is at least 2, there is a sequence of k languages that is sequentially complete for NP, but no nontrivial permutation of this sequence is sequentially complete for NP. We also prove a stronger version of Resource-Bounded Kolmogorov Zero-One Law. We prove that if a class X of languages is a tail set, and has outer-measure less than 1, then it is measurable and has resource-bounded measure 0." @default.
- W397795294 created "2016-06-24" @default.
- W397795294 creator A5058245083 @default.
- W397795294 creator A5064796448 @default.
- W397795294 creator A5067962971 @default.
- W397795294 date "2018-08-13" @default.
- W397795294 modified "2023-10-18" @default.
- W397795294 title "Some results in probability and theoretical computer science" @default.
- W397795294 cites W1547322272 @default.
- W397795294 cites W1563953240 @default.
- W397795294 cites W1569037444 @default.
- W397795294 cites W1573206485 @default.
- W397795294 cites W1580836907 @default.
- W397795294 cites W1596256293 @default.
- W397795294 cites W1679286871 @default.
- W397795294 cites W1882956462 @default.
- W397795294 cites W1979684610 @default.
- W397795294 cites W1981109929 @default.
- W397795294 cites W1983473731 @default.
- W397795294 cites W2004243323 @default.
- W397795294 cites W2006283844 @default.
- W397795294 cites W2008797389 @default.
- W397795294 cites W2029519780 @default.
- W397795294 cites W2045709959 @default.
- W397795294 cites W2047813281 @default.
- W397795294 cites W2056452850 @default.
- W397795294 cites W2057684748 @default.
- W397795294 cites W2060109057 @default.
- W397795294 cites W2070150049 @default.
- W397795294 cites W2075911929 @default.
- W397795294 cites W2080139332 @default.
- W397795294 cites W2102892532 @default.
- W397795294 cites W2141670786 @default.
- W397795294 cites W2143561641 @default.
- W397795294 cites W2169071224 @default.
- W397795294 cites W2175645872 @default.
- W397795294 cites W2176419554 @default.
- W397795294 cites W2268443045 @default.
- W397795294 cites W2499081645 @default.
- W397795294 cites W2768524679 @default.
- W397795294 doi "https://doi.org/10.31274/rtd-180813-9917" @default.
- W397795294 hasPublicationYear "2018" @default.
- W397795294 type Work @default.
- W397795294 sameAs 397795294 @default.
- W397795294 citedByCount "0" @default.
- W397795294 crossrefType "dissertation" @default.
- W397795294 hasAuthorship W397795294A5058245083 @default.
- W397795294 hasAuthorship W397795294A5064796448 @default.
- W397795294 hasAuthorship W397795294A5067962971 @default.
- W397795294 hasBestOaLocation W3977952941 @default.
- W397795294 hasConcept C105795698 @default.
- W397795294 hasConcept C114614502 @default.
- W397795294 hasConcept C115667082 @default.
- W397795294 hasConcept C118615104 @default.
- W397795294 hasConcept C122044880 @default.
- W397795294 hasConcept C122123141 @default.
- W397795294 hasConcept C134306372 @default.
- W397795294 hasConcept C190470478 @default.
- W397795294 hasConcept C202444582 @default.
- W397795294 hasConcept C21031990 @default.
- W397795294 hasConcept C2777021972 @default.
- W397795294 hasConcept C33923547 @default.
- W397795294 hasConcept C34388435 @default.
- W397795294 hasConcept C37914503 @default.
- W397795294 hasConcept C98763669 @default.
- W397795294 hasConceptScore W397795294C105795698 @default.
- W397795294 hasConceptScore W397795294C114614502 @default.
- W397795294 hasConceptScore W397795294C115667082 @default.
- W397795294 hasConceptScore W397795294C118615104 @default.
- W397795294 hasConceptScore W397795294C122044880 @default.
- W397795294 hasConceptScore W397795294C122123141 @default.
- W397795294 hasConceptScore W397795294C134306372 @default.
- W397795294 hasConceptScore W397795294C190470478 @default.
- W397795294 hasConceptScore W397795294C202444582 @default.
- W397795294 hasConceptScore W397795294C21031990 @default.
- W397795294 hasConceptScore W397795294C2777021972 @default.
- W397795294 hasConceptScore W397795294C33923547 @default.
- W397795294 hasConceptScore W397795294C34388435 @default.
- W397795294 hasConceptScore W397795294C37914503 @default.
- W397795294 hasConceptScore W397795294C98763669 @default.
- W397795294 hasLocation W3977952941 @default.
- W397795294 hasLocation W3977952942 @default.
- W397795294 hasOpenAccess W397795294 @default.
- W397795294 hasPrimaryLocation W3977952941 @default.
- W397795294 hasRelatedWork W1983769554 @default.
- W397795294 hasRelatedWork W2021614271 @default.
- W397795294 hasRelatedWork W2049389387 @default.
- W397795294 hasRelatedWork W2059396955 @default.
- W397795294 hasRelatedWork W2156668047 @default.
- W397795294 hasRelatedWork W2350434139 @default.
- W397795294 hasRelatedWork W2952451990 @default.
- W397795294 hasRelatedWork W3119714873 @default.
- W397795294 hasRelatedWork W397795294 @default.
- W397795294 hasRelatedWork W4210712972 @default.
- W397795294 isParatext "false" @default.
- W397795294 isRetracted "false" @default.
- W397795294 magId "397795294" @default.
- W397795294 workType "dissertation" @default.