Matches in SemOpenAlex for { <https://semopenalex.org/work/W39808511> ?p ?o ?g. }
- W39808511 endingPage "28" @default.
- W39808511 startingPage "3" @default.
- W39808511 abstract "Evolutionary algorithms (EAs) used in complex optimization domains usually need to perform a large number of fitness function evaluations in order to get near-optimal solutions. In real world application domains such as engineering design problems, such evaluations can be extremely computationally expensive. In some extreme cases there is no clear definition of the fitness function or the fitness function is too ambiguous to be deterministically evaluated. It is therefore common to estimate or approximate the fitness. A popular method is to construct a so-called surrogate or meta-model, which can simulate the behavior of the original fitness function, but can be evaluated much faster. An interesting trend is to use multiple surrogates to gain better performance in fitness approximation. In this chapter, an up-to-date survey of fitness approximation applied in evolutionary algorithms is presented. The main focus areas are the methods of fitness approximation, the working styles of fitness approximation, and the management of the approximation during the optimization process. To conclude, some open questions in this area are discussed." @default.
- W39808511 created "2016-06-24" @default.
- W39808511 creator A5035370466 @default.
- W39808511 creator A5083945206 @default.
- W39808511 date "2010-01-01" @default.
- W39808511 modified "2023-10-16" @default.
- W39808511 title "A Survey of Fitness Approximation Methods Applied in Evolutionary Algorithms" @default.
- W39808511 cites W1483317606 @default.
- W39808511 cites W1489069145 @default.
- W39808511 cites W1510073064 @default.
- W39808511 cites W1522301058 @default.
- W39808511 cites W1529042793 @default.
- W39808511 cites W1551337287 @default.
- W39808511 cites W1589195638 @default.
- W39808511 cites W1935547175 @default.
- W39808511 cites W1939479690 @default.
- W39808511 cites W1963751895 @default.
- W39808511 cites W1980435942 @default.
- W39808511 cites W1984603815 @default.
- W39808511 cites W1993139979 @default.
- W39808511 cites W1998233144 @default.
- W39808511 cites W2012451526 @default.
- W39808511 cites W2012794579 @default.
- W39808511 cites W2016268734 @default.
- W39808511 cites W2017593540 @default.
- W39808511 cites W2020211902 @default.
- W39808511 cites W2034988421 @default.
- W39808511 cites W2037788267 @default.
- W39808511 cites W2058847030 @default.
- W39808511 cites W2069901738 @default.
- W39808511 cites W2072409782 @default.
- W39808511 cites W2075220263 @default.
- W39808511 cites W2078035571 @default.
- W39808511 cites W2080430588 @default.
- W39808511 cites W2083450550 @default.
- W39808511 cites W2088990166 @default.
- W39808511 cites W2092211810 @default.
- W39808511 cites W2106961302 @default.
- W39808511 cites W2110194546 @default.
- W39808511 cites W2111526171 @default.
- W39808511 cites W2118114365 @default.
- W39808511 cites W2123802995 @default.
- W39808511 cites W2131612655 @default.
- W39808511 cites W2132932473 @default.
- W39808511 cites W2136930738 @default.
- W39808511 cites W2151019861 @default.
- W39808511 cites W2152043436 @default.
- W39808511 cites W2154122135 @default.
- W39808511 cites W2156106639 @default.
- W39808511 cites W2165281693 @default.
- W39808511 cites W2170333278 @default.
- W39808511 cites W2305092067 @default.
- W39808511 cites W2324524092 @default.
- W39808511 cites W2328890028 @default.
- W39808511 cites W4232209195 @default.
- W39808511 cites W2992706491 @default.
- W39808511 doi "https://doi.org/10.1007/978-3-642-10701-6_1" @default.
- W39808511 hasPublicationYear "2010" @default.
- W39808511 type Work @default.
- W39808511 sameAs 39808511 @default.
- W39808511 citedByCount "51" @default.
- W39808511 countsByYear W398085112012 @default.
- W39808511 countsByYear W398085112013 @default.
- W39808511 countsByYear W398085112015 @default.
- W39808511 countsByYear W398085112016 @default.
- W39808511 countsByYear W398085112017 @default.
- W39808511 countsByYear W398085112018 @default.
- W39808511 countsByYear W398085112019 @default.
- W39808511 countsByYear W398085112020 @default.
- W39808511 countsByYear W398085112021 @default.
- W39808511 countsByYear W398085112022 @default.
- W39808511 countsByYear W398085112023 @default.
- W39808511 crossrefType "book-chapter" @default.
- W39808511 hasAuthorship W39808511A5035370466 @default.
- W39808511 hasAuthorship W39808511A5083945206 @default.
- W39808511 hasConcept C11413529 @default.
- W39808511 hasConcept C126255220 @default.
- W39808511 hasConcept C154945302 @default.
- W39808511 hasConcept C159149176 @default.
- W39808511 hasConcept C33923547 @default.
- W39808511 hasConcept C41008148 @default.
- W39808511 hasConceptScore W39808511C11413529 @default.
- W39808511 hasConceptScore W39808511C126255220 @default.
- W39808511 hasConceptScore W39808511C154945302 @default.
- W39808511 hasConceptScore W39808511C159149176 @default.
- W39808511 hasConceptScore W39808511C33923547 @default.
- W39808511 hasConceptScore W39808511C41008148 @default.
- W39808511 hasLocation W398085111 @default.
- W39808511 hasOpenAccess W39808511 @default.
- W39808511 hasPrimaryLocation W398085111 @default.
- W39808511 hasRelatedWork W1880866131 @default.
- W39808511 hasRelatedWork W1892318172 @default.
- W39808511 hasRelatedWork W2078187789 @default.
- W39808511 hasRelatedWork W2333698505 @default.
- W39808511 hasRelatedWork W2351491280 @default.
- W39808511 hasRelatedWork W2371447506 @default.
- W39808511 hasRelatedWork W2384897607 @default.
- W39808511 hasRelatedWork W2386767533 @default.