Matches in SemOpenAlex for { <https://semopenalex.org/work/W40390932> ?p ?o ?g. }
- W40390932 startingPage "7" @default.
- W40390932 abstract "In the paper a fault detection analysis through neural ensembling approaches is presented. Experimentation was carried out over two months monitoring data sets for the lighting energy consumption of an actual office building located at ENEA ‘Casaccia’ Research Centre. Using a fault free data set for the training, the Artificial Neural Networks Ensembling (ANNE) were used for the estimation of hourly lighting energy consumption in normal operational conditions. The fault detection was performed through the analysis of the magnitude of residuals using a peak detection method. Moreover the peak detection method was applied directly to the testing data set. Finally a majority voting method to ensemble the results of different ANN classifiers was performed. Experimental results show the effectiveness of ensembling approaches in automatic detection of abnormal building lighting energy consumption. In the energy optimization field, the evaluation of an actual building energy consumption data is a demandable and emerging area of building energy analysis. Therefore, developing automatic, accurate and reliable fault detection and diagnosis (FDD) methods is necessary in order to ensure the optimal operations of systems and to save energy. Different intelligent methods have been used to obtain useful information from building energy consumption data. A number of papers on the application of Artificial Neural Networks(ANNs) for FDD have been published. In this paper the capability of different Artificial Neural Networks Ensembling (ANN) approaches for artificial lighting fault detection of a real office building is demonstrated. The fault detection has been performed analyzing the magnitude of the residual generated by ANNE using a peak detection method. Moreover a majority voting method has been performed to ensemble the results of different ANN classifiers. In the first part of the paper a brief theoretical description of the methods analyzed is presented. Then the application of a fault detection analysis for the lighting energy consumption is showed with the aim to compare the capability of neural ensembling approaches in detecting two artificial faults created in the testing period. 2. Consumption modeling by Artificial Neural Network basic ensembling method" @default.
- W40390932 created "2016-06-24" @default.
- W40390932 creator A5024357919 @default.
- W40390932 creator A5063327163 @default.
- W40390932 creator A5080716070 @default.
- W40390932 date "2013-01-01" @default.
- W40390932 modified "2023-09-26" @default.
- W40390932 title "Building Energy Consumption Modeling with Neural Ensembling Approaches for Fault Detection Analysis" @default.
- W40390932 cites W1536929369 @default.
- W40390932 cites W2285257517 @default.
- W40390932 cites W2309693750 @default.
- W40390932 cites W36433003 @default.
- W40390932 hasPublicationYear "2013" @default.
- W40390932 type Work @default.
- W40390932 sameAs 40390932 @default.
- W40390932 citedByCount "1" @default.
- W40390932 countsByYear W403909322014 @default.
- W40390932 crossrefType "journal-article" @default.
- W40390932 hasAuthorship W40390932A5024357919 @default.
- W40390932 hasAuthorship W40390932A5063327163 @default.
- W40390932 hasAuthorship W40390932A5080716070 @default.
- W40390932 hasConcept C105795698 @default.
- W40390932 hasConcept C11413529 @default.
- W40390932 hasConcept C119599485 @default.
- W40390932 hasConcept C119857082 @default.
- W40390932 hasConcept C121332964 @default.
- W40390932 hasConcept C124101348 @default.
- W40390932 hasConcept C127313418 @default.
- W40390932 hasConcept C127413603 @default.
- W40390932 hasConcept C152745839 @default.
- W40390932 hasConcept C154945302 @default.
- W40390932 hasConcept C155512373 @default.
- W40390932 hasConcept C165205528 @default.
- W40390932 hasConcept C172707124 @default.
- W40390932 hasConcept C175551986 @default.
- W40390932 hasConcept C177264268 @default.
- W40390932 hasConcept C186370098 @default.
- W40390932 hasConcept C199360897 @default.
- W40390932 hasConcept C200601418 @default.
- W40390932 hasConcept C2780165032 @default.
- W40390932 hasConcept C33923547 @default.
- W40390932 hasConcept C41008148 @default.
- W40390932 hasConcept C50644808 @default.
- W40390932 hasConcept C58489278 @default.
- W40390932 hasConcept C79403827 @default.
- W40390932 hasConcept C83931994 @default.
- W40390932 hasConcept C97355855 @default.
- W40390932 hasConceptScore W40390932C105795698 @default.
- W40390932 hasConceptScore W40390932C11413529 @default.
- W40390932 hasConceptScore W40390932C119599485 @default.
- W40390932 hasConceptScore W40390932C119857082 @default.
- W40390932 hasConceptScore W40390932C121332964 @default.
- W40390932 hasConceptScore W40390932C124101348 @default.
- W40390932 hasConceptScore W40390932C127313418 @default.
- W40390932 hasConceptScore W40390932C127413603 @default.
- W40390932 hasConceptScore W40390932C152745839 @default.
- W40390932 hasConceptScore W40390932C154945302 @default.
- W40390932 hasConceptScore W40390932C155512373 @default.
- W40390932 hasConceptScore W40390932C165205528 @default.
- W40390932 hasConceptScore W40390932C172707124 @default.
- W40390932 hasConceptScore W40390932C175551986 @default.
- W40390932 hasConceptScore W40390932C177264268 @default.
- W40390932 hasConceptScore W40390932C186370098 @default.
- W40390932 hasConceptScore W40390932C199360897 @default.
- W40390932 hasConceptScore W40390932C200601418 @default.
- W40390932 hasConceptScore W40390932C2780165032 @default.
- W40390932 hasConceptScore W40390932C33923547 @default.
- W40390932 hasConceptScore W40390932C41008148 @default.
- W40390932 hasConceptScore W40390932C50644808 @default.
- W40390932 hasConceptScore W40390932C58489278 @default.
- W40390932 hasConceptScore W40390932C79403827 @default.
- W40390932 hasConceptScore W40390932C83931994 @default.
- W40390932 hasConceptScore W40390932C97355855 @default.
- W40390932 hasIssue "2" @default.
- W40390932 hasLocation W403909321 @default.
- W40390932 hasOpenAccess W40390932 @default.
- W40390932 hasPrimaryLocation W403909321 @default.
- W40390932 hasRelatedWork W1881999183 @default.
- W40390932 hasRelatedWork W2046394242 @default.
- W40390932 hasRelatedWork W2060774500 @default.
- W40390932 hasRelatedWork W2143537265 @default.
- W40390932 hasRelatedWork W219150422 @default.
- W40390932 hasRelatedWork W2375951064 @default.
- W40390932 hasRelatedWork W2474873893 @default.
- W40390932 hasRelatedWork W2510997708 @default.
- W40390932 hasRelatedWork W2606989972 @default.
- W40390932 hasRelatedWork W2626569803 @default.
- W40390932 hasRelatedWork W2767949190 @default.
- W40390932 hasRelatedWork W2901967401 @default.
- W40390932 hasRelatedWork W2904678632 @default.
- W40390932 hasRelatedWork W2922382540 @default.
- W40390932 hasRelatedWork W2937280260 @default.
- W40390932 hasRelatedWork W2974701138 @default.
- W40390932 hasRelatedWork W3123526934 @default.
- W40390932 hasRelatedWork W3133941285 @default.
- W40390932 hasRelatedWork W3135274092 @default.
- W40390932 hasRelatedWork W3190823554 @default.
- W40390932 isParatext "false" @default.
- W40390932 isRetracted "false" @default.