Matches in SemOpenAlex for { <https://semopenalex.org/work/W40563048> ?p ?o ?g. }
- W40563048 endingPage "769" @default.
- W40563048 startingPage "750" @default.
- W40563048 abstract "1. We study the propagation and dynamics of spindle waves in thalamic slices by developing and analyzing a model of reciprocally coupled populations of excitatory thalamocortical (TC) neurons and inhibitory thalamic reticular (RE) neurons. 2. Each TC neuron has three intrinsic ionic currents: a low-threshold T-type Ca+2 current (ICa-T), a hyperpolarization-activated cation (sag) current (Ih) and a leak current. Each RE cell also has three currents: ICa-T, a leak current, and a calcium-activated potassium current (IAHP). Isolated TC cells are at rest, can burst when released or depolarized from a hyperpolarized level, and burst rhythmically under moderate constant hyperpolarizing current. Isolated RE cells are at a hyperpolarized resting membrane potential and can burst when depolarized. 3. TC cells excite RE cells with fast alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) synapses, and RE cells inhibit TC cells with fast gamma-aminobutyric acid-A (GABAA) and slow GABAB synapses and inhibit each other with GABAA synapses only. GABAB postsynaptic conductances operate far from saturation, and the slow inhibitory postsynaptic potentials (IPSPs) increase with the width of the presynaptic burst. The model network is a one-dimensional cellular array with localized coupling. The synaptic coupling strength decays with the distance between the pre- and postsynaptic cells, either exponentially or as a step function. 4. The intact network can oscillate with partial synchrony and a population frequency of approximately 10 Hz. RE cells emit bursts almost at every oscillation cycle, whereas TC cells do so almost at every other cycle. Block of GABAB receptors hardly changes the network behavior. Block of GABAA receptors leads the network to a slowed oscillatory state, where the population frequency is approximately 4 Hz and both RE and TC cells fire unusually long bursts at every cycle and in full synchrony. These results are consistent with the experimental observations of von Krosigk, Bal, and McCormick. We obtain such consistency only when the above assumptions regarding the synaptic dynamics, particularly nonsaturating GABAB synapses, are fulfilled. 5. The slice model has a stable rest state with no neural activity. By initially depolarizing a few neurons at one end of the slice while all the other cells are at rest, a recruitment process may be initiated, and a wavefront of oscillatory activity propagates across the slice. Ahead of the wavefront, neurons are quiescent; neurons behind it oscillate. We find that the wave progresses forward in a lurching manner. TC cells that have just become inhibited must be hyperpolarized for a long enough time before they can fire rebound bursts and recruit RE cells. This step limits the wavefront velocity and may involve a substantial part of the cycle when no cells at the front are depolarized. 6. The wavefront velocity increases linearly with the characteristic spatial length of the connectivity (the footprint length). It increases only gradually with the synaptic strength, logarithmically in the case of an exponential connection function and only slightly for a step connection function. It also decreases gradually with a potassium leak conductance that hyperpolarizes RE cells. 7. To reproduce the experimentally measured wavefront velocity of approximately 1 mm/s, together with other in vitro observations, both the RE-to-TC and the TC-to-RE projections in the model should be spatially localized. The sum of the RE-to-TC and the TC-to-RE synaptic footprint lengths should be on the order of 100 microns. (ABSTRACT TRUNCATED AT 250 WORDS)" @default.
- W40563048 created "2016-06-24" @default.
- W40563048 creator A5002155898 @default.
- W40563048 creator A5016324535 @default.
- W40563048 creator A5061116254 @default.
- W40563048 date "1996-02-01" @default.
- W40563048 modified "2023-09-27" @default.
- W40563048 title "Propagation of spindle waves in a thalamic slice model" @default.
- W40563048 cites W1487210357 @default.
- W40563048 cites W1514874244 @default.
- W40563048 cites W1578826030 @default.
- W40563048 cites W1594275312 @default.
- W40563048 cites W172607411 @default.
- W40563048 cites W1761768872 @default.
- W40563048 cites W178727064 @default.
- W40563048 cites W1821110525 @default.
- W40563048 cites W1869401664 @default.
- W40563048 cites W1962046274 @default.
- W40563048 cites W1964251730 @default.
- W40563048 cites W1968781315 @default.
- W40563048 cites W1979618667 @default.
- W40563048 cites W1985940938 @default.
- W40563048 cites W1987022586 @default.
- W40563048 cites W1999435425 @default.
- W40563048 cites W2002189290 @default.
- W40563048 cites W2008402580 @default.
- W40563048 cites W2011592285 @default.
- W40563048 cites W2015820903 @default.
- W40563048 cites W2024328209 @default.
- W40563048 cites W2024666274 @default.
- W40563048 cites W2026823182 @default.
- W40563048 cites W2028311911 @default.
- W40563048 cites W2035075333 @default.
- W40563048 cites W2046300633 @default.
- W40563048 cites W2048419276 @default.
- W40563048 cites W2049167794 @default.
- W40563048 cites W2065416066 @default.
- W40563048 cites W2068010757 @default.
- W40563048 cites W2072389568 @default.
- W40563048 cites W2074911271 @default.
- W40563048 cites W2079484715 @default.
- W40563048 cites W2080737400 @default.
- W40563048 cites W2084451863 @default.
- W40563048 cites W2085530639 @default.
- W40563048 cites W2087642862 @default.
- W40563048 cites W2090968905 @default.
- W40563048 cites W2096600960 @default.
- W40563048 cites W2100296285 @default.
- W40563048 cites W2134131990 @default.
- W40563048 cites W2136440978 @default.
- W40563048 cites W2137672824 @default.
- W40563048 cites W2147502381 @default.
- W40563048 cites W2153110368 @default.
- W40563048 cites W2154323800 @default.
- W40563048 cites W2158394549 @default.
- W40563048 cites W21633769 @default.
- W40563048 cites W2163694327 @default.
- W40563048 cites W2165892338 @default.
- W40563048 cites W2177259892 @default.
- W40563048 cites W2233242573 @default.
- W40563048 cites W2400961508 @default.
- W40563048 cites W2401708274 @default.
- W40563048 cites W3004157836 @default.
- W40563048 doi "https://doi.org/10.1152/jn.1996.75.2.750" @default.
- W40563048 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/8714650" @default.
- W40563048 hasPublicationYear "1996" @default.
- W40563048 type Work @default.
- W40563048 sameAs 40563048 @default.
- W40563048 citedByCount "165" @default.
- W40563048 countsByYear W405630482012 @default.
- W40563048 countsByYear W405630482013 @default.
- W40563048 countsByYear W405630482014 @default.
- W40563048 countsByYear W405630482015 @default.
- W40563048 countsByYear W405630482016 @default.
- W40563048 countsByYear W405630482017 @default.
- W40563048 countsByYear W405630482018 @default.
- W40563048 countsByYear W405630482019 @default.
- W40563048 countsByYear W405630482020 @default.
- W40563048 countsByYear W405630482021 @default.
- W40563048 countsByYear W405630482022 @default.
- W40563048 countsByYear W405630482023 @default.
- W40563048 crossrefType "journal-article" @default.
- W40563048 hasAuthorship W40563048A5002155898 @default.
- W40563048 hasAuthorship W40563048A5016324535 @default.
- W40563048 hasAuthorship W40563048A5061116254 @default.
- W40563048 hasConcept C112592302 @default.
- W40563048 hasConcept C12554922 @default.
- W40563048 hasConcept C131453863 @default.
- W40563048 hasConcept C144024400 @default.
- W40563048 hasConcept C147944092 @default.
- W40563048 hasConcept C149923435 @default.
- W40563048 hasConcept C160268369 @default.
- W40563048 hasConcept C169760540 @default.
- W40563048 hasConcept C170493617 @default.
- W40563048 hasConcept C17077164 @default.
- W40563048 hasConcept C178790620 @default.
- W40563048 hasConcept C179053475 @default.
- W40563048 hasConcept C181911157 @default.