Matches in SemOpenAlex for { <https://semopenalex.org/work/W40633406> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W40633406 abstract "01 1 1 ) ( a x a x a x a x f n n n n + + + + = − − L by a binomial of c x x g − = ) ( , without mentioning if this classical method can be applied when the divisor is a polynomial of degree being higher than 1, and some further explicitly stated that it is not applicable to such a divisor. For example, Larson, Hostetler, and Edwards claimed, “synthetic division works only for divisors of the form k x − . You cannot use synthetic division to divide a polynomial by a quadratic such as 3" @default.
- W40633406 created "2016-06-24" @default.
- W40633406 creator A5078435714 @default.
- W40633406 date "2003-01-01" @default.
- W40633406 modified "2023-10-01" @default.
- W40633406 title "A Generalization of Synthetic Division and A General Theorem of Division of Polynomials" @default.
- W40633406 cites W2322966798 @default.
- W40633406 cites W2971636943 @default.
- W40633406 hasPublicationYear "2003" @default.
- W40633406 type Work @default.
- W40633406 sameAs 40633406 @default.
- W40633406 citedByCount "3" @default.
- W40633406 countsByYear W406334062012 @default.
- W40633406 crossrefType "journal-article" @default.
- W40633406 hasAuthorship W40633406A5078435714 @default.
- W40633406 hasConcept C105795698 @default.
- W40633406 hasConcept C114614502 @default.
- W40633406 hasConcept C118615104 @default.
- W40633406 hasConcept C121332964 @default.
- W40633406 hasConcept C134306372 @default.
- W40633406 hasConcept C177148314 @default.
- W40633406 hasConcept C203492994 @default.
- W40633406 hasConcept C24890656 @default.
- W40633406 hasConcept C2775997480 @default.
- W40633406 hasConcept C2781315470 @default.
- W40633406 hasConcept C33923547 @default.
- W40633406 hasConcept C60798267 @default.
- W40633406 hasConcept C90119067 @default.
- W40633406 hasConcept C94375191 @default.
- W40633406 hasConceptScore W40633406C105795698 @default.
- W40633406 hasConceptScore W40633406C114614502 @default.
- W40633406 hasConceptScore W40633406C118615104 @default.
- W40633406 hasConceptScore W40633406C121332964 @default.
- W40633406 hasConceptScore W40633406C134306372 @default.
- W40633406 hasConceptScore W40633406C177148314 @default.
- W40633406 hasConceptScore W40633406C203492994 @default.
- W40633406 hasConceptScore W40633406C24890656 @default.
- W40633406 hasConceptScore W40633406C2775997480 @default.
- W40633406 hasConceptScore W40633406C2781315470 @default.
- W40633406 hasConceptScore W40633406C33923547 @default.
- W40633406 hasConceptScore W40633406C60798267 @default.
- W40633406 hasConceptScore W40633406C90119067 @default.
- W40633406 hasConceptScore W40633406C94375191 @default.
- W40633406 hasLocation W406334061 @default.
- W40633406 hasOpenAccess W40633406 @default.
- W40633406 hasPrimaryLocation W406334061 @default.
- W40633406 hasRelatedWork W1963990605 @default.
- W40633406 hasRelatedWork W1990359658 @default.
- W40633406 hasRelatedWork W2037435132 @default.
- W40633406 hasRelatedWork W2059208884 @default.
- W40633406 hasRelatedWork W2060558517 @default.
- W40633406 hasRelatedWork W2076851763 @default.
- W40633406 hasRelatedWork W2081290340 @default.
- W40633406 hasRelatedWork W2106322834 @default.
- W40633406 hasRelatedWork W2172061174 @default.
- W40633406 hasRelatedWork W2249760657 @default.
- W40633406 hasRelatedWork W2317230655 @default.
- W40633406 hasRelatedWork W2407719647 @default.
- W40633406 hasRelatedWork W2478485520 @default.
- W40633406 hasRelatedWork W2752862661 @default.
- W40633406 hasRelatedWork W2885075397 @default.
- W40633406 hasRelatedWork W3012365819 @default.
- W40633406 hasRelatedWork W3022925910 @default.
- W40633406 hasRelatedWork W3128841043 @default.
- W40633406 hasRelatedWork W3129032914 @default.
- W40633406 hasRelatedWork W3192502741 @default.
- W40633406 isParatext "false" @default.
- W40633406 isRetracted "false" @default.
- W40633406 magId "40633406" @default.
- W40633406 workType "article" @default.