Matches in SemOpenAlex for { <https://semopenalex.org/work/W40677528> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W40677528 abstract "This thesis is a contribution to the emerging field of experimental rigorous mathematics, where one uses symbolic computation to conjecture proof-plans, and then proceeds to verify the conjectured proofs rigorously. The proved results, in addition to their independent interest, should also be viewed as case studies in this budding methodology. We now proceed to described the specific results presented in this dissertation. We first develop a finite-state automata approach, implemented in a Maple package ToadsAndFrogs, for conjecturing, and then rigorously proving, values for large families of positions in Richard Guy's combinatorial game Toads and Frogs. In particular, we prove conjectures of Jeff Erickson. We also discuss the values of all positions with exactly one s, TassF a, TasssFFF, TassFb, TasssFb. We next consider the generalized chess problem of checkmating a king with a king and a rook on an m × n board at a specific starting position. We analyze the fastest way to checkmate. We also consider a problem posed by Ronald Graham about the minimum number, over all 2-colorings of [1, n], of generalized so-called Schur triples, i.e. monochromatic of the form (x, y, x + ay) a ≥ 1. (The case a = 1 corresponds to the classical Schur triples). In addition to giving a completely new proof of the already known case of a = 1, we show that the minimum of such is at most n22apa2+2a+3p + O(n) when a ≥ 2. We also find a new upper bound for the minimum number, over all r-colorings of [1, n], of monochromatic Schur triples, for r ≥ 3. Finally, in yet a different direction, we find closed-form expressions for the second moment of the random variable number of monochromatic Schur triples defined on the sample space of all r-colorings of the first n integers, and second and even higher moments for the of monochromatic complete graphs Kk in Kn. In addition to their considerable independent interest, these formulas would hopefully be instrumental in improving the extremely weak known lower bounds for the asymptotics of Ramsey number." @default.
- W40677528 created "2016-06-24" @default.
- W40677528 creator A5058881306 @default.
- W40677528 creator A5061555889 @default.
- W40677528 date "2008-01-01" @default.
- W40677528 modified "2023-09-23" @default.
- W40677528 title "Symbolic-computational methods in combinatorial game theory and ramsey theory" @default.
- W40677528 cites W1595207339 @default.
- W40677528 cites W1972252408 @default.
- W40677528 cites W1981959436 @default.
- W40677528 cites W2025835037 @default.
- W40677528 cites W2078923546 @default.
- W40677528 cites W2083607653 @default.
- W40677528 cites W2894564506 @default.
- W40677528 doi "https://doi.org/10.7282/t30g3k3f" @default.
- W40677528 hasPublicationYear "2008" @default.
- W40677528 type Work @default.
- W40677528 sameAs 40677528 @default.
- W40677528 citedByCount "0" @default.
- W40677528 crossrefType "journal-article" @default.
- W40677528 hasAuthorship W40677528A5058881306 @default.
- W40677528 hasAuthorship W40677528A5061555889 @default.
- W40677528 hasConcept C108710211 @default.
- W40677528 hasConcept C112291201 @default.
- W40677528 hasConcept C114614502 @default.
- W40677528 hasConcept C118539577 @default.
- W40677528 hasConcept C118615104 @default.
- W40677528 hasConcept C2524010 @default.
- W40677528 hasConcept C2780414537 @default.
- W40677528 hasConcept C2780990831 @default.
- W40677528 hasConcept C33923547 @default.
- W40677528 hasConcept C59822182 @default.
- W40677528 hasConcept C86803240 @default.
- W40677528 hasConceptScore W40677528C108710211 @default.
- W40677528 hasConceptScore W40677528C112291201 @default.
- W40677528 hasConceptScore W40677528C114614502 @default.
- W40677528 hasConceptScore W40677528C118539577 @default.
- W40677528 hasConceptScore W40677528C118615104 @default.
- W40677528 hasConceptScore W40677528C2524010 @default.
- W40677528 hasConceptScore W40677528C2780414537 @default.
- W40677528 hasConceptScore W40677528C2780990831 @default.
- W40677528 hasConceptScore W40677528C33923547 @default.
- W40677528 hasConceptScore W40677528C59822182 @default.
- W40677528 hasConceptScore W40677528C86803240 @default.
- W40677528 hasLocation W406775281 @default.
- W40677528 hasOpenAccess W40677528 @default.
- W40677528 hasPrimaryLocation W406775281 @default.
- W40677528 hasRelatedWork W1545543029 @default.
- W40677528 hasRelatedWork W1977575010 @default.
- W40677528 hasRelatedWork W2004073971 @default.
- W40677528 hasRelatedWork W205028349 @default.
- W40677528 hasRelatedWork W2118701207 @default.
- W40677528 hasRelatedWork W2162510805 @default.
- W40677528 hasRelatedWork W2418260729 @default.
- W40677528 hasRelatedWork W2494193747 @default.
- W40677528 hasRelatedWork W2599675158 @default.
- W40677528 hasRelatedWork W2743118218 @default.
- W40677528 hasRelatedWork W2989604775 @default.
- W40677528 hasRelatedWork W2991508692 @default.
- W40677528 hasRelatedWork W3023148838 @default.
- W40677528 hasRelatedWork W3036017269 @default.
- W40677528 hasRelatedWork W3036836463 @default.
- W40677528 hasRelatedWork W3097592276 @default.
- W40677528 hasRelatedWork W3131012422 @default.
- W40677528 hasRelatedWork W3135568492 @default.
- W40677528 hasRelatedWork W84517870 @default.
- W40677528 hasRelatedWork W283227293 @default.
- W40677528 isParatext "false" @default.
- W40677528 isRetracted "false" @default.
- W40677528 magId "40677528" @default.
- W40677528 workType "article" @default.