Matches in SemOpenAlex for { <https://semopenalex.org/work/W4081608> ?p ?o ?g. }
- W4081608 endingPage "42" @default.
- W4081608 startingPage "1" @default.
- W4081608 abstract "Malware analysts use Machine Learning to aid in the fight against the unstemmed tide of new malware encountered on a daily, even hourly, basis. The marriage of these two fields (malware and machine learning) is a match made in heaven: malware contains inherent patterns and similarities due to code and code pattern reuse by malware authors; machine learning operates by discovering inherent patterns and similarities. In this chapter, we seek to provide an overhead, guiding view of machine learning and how it is being applied in malware analysis. We do not attempt to provide a tutorial or comprehensive introduction to either malware or machine learning, but rather the major issues and intuitions of both fields along with an elucidation of the malware analysis problems machine learning is best equipped to solve." @default.
- W4081608 created "2016-06-24" @default.
- W4081608 creator A5005097571 @default.
- W4081608 creator A5010291697 @default.
- W4081608 date "2014-09-04" @default.
- W4081608 modified "2023-09-27" @default.
- W4081608 title "Malware and Machine Learning" @default.
- W4081608 cites W1482612322 @default.
- W4081608 cites W1525120920 @default.
- W4081608 cites W1553801604 @default.
- W4081608 cites W1553894716 @default.
- W4081608 cites W1580559113 @default.
- W4081608 cites W1586252162 @default.
- W4081608 cites W1736726159 @default.
- W4081608 cites W1966695331 @default.
- W4081608 cites W1966948031 @default.
- W4081608 cites W1973211701 @default.
- W4081608 cites W1979400615 @default.
- W4081608 cites W1985737644 @default.
- W4081608 cites W2008324060 @default.
- W4081608 cites W2010841095 @default.
- W4081608 cites W2018175892 @default.
- W4081608 cites W2034938003 @default.
- W4081608 cites W2035925615 @default.
- W4081608 cites W2042454716 @default.
- W4081608 cites W2042742130 @default.
- W4081608 cites W2044660163 @default.
- W4081608 cites W2045434438 @default.
- W4081608 cites W2066220442 @default.
- W4081608 cites W2068211976 @default.
- W4081608 cites W2075715173 @default.
- W4081608 cites W2076769479 @default.
- W4081608 cites W2097645701 @default.
- W4081608 cites W2098492867 @default.
- W4081608 cites W2103464385 @default.
- W4081608 cites W2115346774 @default.
- W4081608 cites W2122478643 @default.
- W4081608 cites W2123845384 @default.
- W4081608 cites W2128389850 @default.
- W4081608 cites W2138644293 @default.
- W4081608 cites W2144112223 @default.
- W4081608 cites W2145056020 @default.
- W4081608 cites W2148588713 @default.
- W4081608 cites W2151528949 @default.
- W4081608 cites W2154747541 @default.
- W4081608 cites W2164163973 @default.
- W4081608 cites W2166462894 @default.
- W4081608 cites W21666439 @default.
- W4081608 cites W2167975832 @default.
- W4081608 cites W2487087946 @default.
- W4081608 cites W4231255817 @default.
- W4081608 cites W4232339445 @default.
- W4081608 doi "https://doi.org/10.1007/978-3-319-08624-8_1" @default.
- W4081608 hasPublicationYear "2014" @default.
- W4081608 type Work @default.
- W4081608 sameAs 4081608 @default.
- W4081608 citedByCount "23" @default.
- W4081608 countsByYear W40816082015 @default.
- W4081608 countsByYear W40816082016 @default.
- W4081608 countsByYear W40816082017 @default.
- W4081608 countsByYear W40816082018 @default.
- W4081608 countsByYear W40816082019 @default.
- W4081608 countsByYear W40816082020 @default.
- W4081608 countsByYear W40816082021 @default.
- W4081608 countsByYear W40816082022 @default.
- W4081608 countsByYear W40816082023 @default.
- W4081608 crossrefType "book-chapter" @default.
- W4081608 hasAuthorship W4081608A5005097571 @default.
- W4081608 hasAuthorship W4081608A5010291697 @default.
- W4081608 hasConcept C119857082 @default.
- W4081608 hasConcept C127413603 @default.
- W4081608 hasConcept C154945302 @default.
- W4081608 hasConcept C177264268 @default.
- W4081608 hasConcept C199360897 @default.
- W4081608 hasConcept C206588197 @default.
- W4081608 hasConcept C2776760102 @default.
- W4081608 hasConcept C2779395397 @default.
- W4081608 hasConcept C2779960059 @default.
- W4081608 hasConcept C38652104 @default.
- W4081608 hasConcept C41008148 @default.
- W4081608 hasConcept C541664917 @default.
- W4081608 hasConcept C548081761 @default.
- W4081608 hasConcept C84525096 @default.
- W4081608 hasConceptScore W4081608C119857082 @default.
- W4081608 hasConceptScore W4081608C127413603 @default.
- W4081608 hasConceptScore W4081608C154945302 @default.
- W4081608 hasConceptScore W4081608C177264268 @default.
- W4081608 hasConceptScore W4081608C199360897 @default.
- W4081608 hasConceptScore W4081608C206588197 @default.
- W4081608 hasConceptScore W4081608C2776760102 @default.
- W4081608 hasConceptScore W4081608C2779395397 @default.
- W4081608 hasConceptScore W4081608C2779960059 @default.
- W4081608 hasConceptScore W4081608C38652104 @default.
- W4081608 hasConceptScore W4081608C41008148 @default.
- W4081608 hasConceptScore W4081608C541664917 @default.
- W4081608 hasConceptScore W4081608C548081761 @default.
- W4081608 hasConceptScore W4081608C84525096 @default.
- W4081608 hasLocation W40816081 @default.