Matches in SemOpenAlex for { <https://semopenalex.org/work/W4132638> ?p ?o ?g. }
- W4132638 abstract "Chaotic response is related to a dense set of unstable periodic orbits (UPOs) and the system often visits the neighborhood of each one of them. Moreover, chaos has sensitive dependence to initial condition, which implies that the system evolution may be altered by small perturbations. Chaos control is based on the richness of chaotic behavior and may be understood as the use of tiny perturbations for the stabilization of an UPO embedded in a chaotic attractor. It makes this kind of behavior to be desirable in a variety of applications, since one of these UPO can provide better performance than others in a particular situation. Due to these characteristics, chaos and many regulatory mechanisms control the dynamics of living systems. Inspired by nature, it is possible to imagine situations where chaos control is employed to stabilize desirable behaviors of mechanical systems. Under this condition, these systems would present a great flexibility when controlled, being able to quickly change from one kind of response to another. Literature presents some contributions related to the analysis of chaos control in mechanical systems. Andrievskii and Fradkov (2004) and Savi et al. (2006) present an overview of applications of chaos control in various scientific fields. There are different techniques employed to perform chaos control (Savi et al., 2006), however, the inspirational idea of these methods is the well-known OGY method (Ott et al., 1990), which is a discrete technique that considers small perturbations promoted in the neighborhood of the desired orbit. This contribution proposes a robust controller that can be applied to stabilize UPOs of chaotic attractors. The adopted approach is based on the sliding mode control strategy and enhanced by a stable adaptive fuzzy inference system to cope with modeling inaccuracies and external disturbances that can arise. The boundedness of all closed-loop signals and the convergence properties of the tracking error are analytically proven using Lyapunov’s direct method and Barbalat’s lemma. The general procedure is applied to a nonlinear pendulum that presents chaotic response (De Paula et al., 2006). Numerical simulations are carried out showing the stabilization of some UPOs of the chaotic attractor showing an effective response, demonstrating the controller performance." @default.
- W4132638 created "2016-06-24" @default.
- W4132638 creator A5063675051 @default.
- W4132638 creator A5070558485 @default.
- W4132638 creator A5078549673 @default.
- W4132638 date "2007-01-01" @default.
- W4132638 modified "2023-09-26" @default.
- W4132638 title "An Adaptive fuzzy sliding mode controller applied to a chatoic pendulum" @default.
- W4132638 cites W1487127700 @default.
- W4132638 cites W2050215640 @default.
- W4132638 cites W2056594453 @default.
- W4132638 cites W2152044720 @default.
- W4132638 hasPublicationYear "2007" @default.
- W4132638 type Work @default.
- W4132638 sameAs 4132638 @default.
- W4132638 citedByCount "0" @default.
- W4132638 crossrefType "journal-article" @default.
- W4132638 hasAuthorship W4132638A5063675051 @default.
- W4132638 hasAuthorship W4132638A5070558485 @default.
- W4132638 hasAuthorship W4132638A5078549673 @default.
- W4132638 hasConcept C105795698 @default.
- W4132638 hasConcept C110639684 @default.
- W4132638 hasConcept C121332964 @default.
- W4132638 hasConcept C127413603 @default.
- W4132638 hasConcept C133731056 @default.
- W4132638 hasConcept C134306372 @default.
- W4132638 hasConcept C154945302 @default.
- W4132638 hasConcept C158622935 @default.
- W4132638 hasConcept C164380108 @default.
- W4132638 hasConcept C167183279 @default.
- W4132638 hasConcept C177264268 @default.
- W4132638 hasConcept C192921069 @default.
- W4132638 hasConcept C199360897 @default.
- W4132638 hasConcept C202759130 @default.
- W4132638 hasConcept C203479927 @default.
- W4132638 hasConcept C2775924081 @default.
- W4132638 hasConcept C2777052490 @default.
- W4132638 hasConcept C2779374083 @default.
- W4132638 hasConcept C2780598303 @default.
- W4132638 hasConcept C33923547 @default.
- W4132638 hasConcept C38652104 @default.
- W4132638 hasConcept C41008148 @default.
- W4132638 hasConcept C47446073 @default.
- W4132638 hasConcept C62520636 @default.
- W4132638 hasConcept C6557445 @default.
- W4132638 hasConcept C78519656 @default.
- W4132638 hasConcept C86803240 @default.
- W4132638 hasConcept C95518870 @default.
- W4132638 hasConceptScore W4132638C105795698 @default.
- W4132638 hasConceptScore W4132638C110639684 @default.
- W4132638 hasConceptScore W4132638C121332964 @default.
- W4132638 hasConceptScore W4132638C127413603 @default.
- W4132638 hasConceptScore W4132638C133731056 @default.
- W4132638 hasConceptScore W4132638C134306372 @default.
- W4132638 hasConceptScore W4132638C154945302 @default.
- W4132638 hasConceptScore W4132638C158622935 @default.
- W4132638 hasConceptScore W4132638C164380108 @default.
- W4132638 hasConceptScore W4132638C167183279 @default.
- W4132638 hasConceptScore W4132638C177264268 @default.
- W4132638 hasConceptScore W4132638C192921069 @default.
- W4132638 hasConceptScore W4132638C199360897 @default.
- W4132638 hasConceptScore W4132638C202759130 @default.
- W4132638 hasConceptScore W4132638C203479927 @default.
- W4132638 hasConceptScore W4132638C2775924081 @default.
- W4132638 hasConceptScore W4132638C2777052490 @default.
- W4132638 hasConceptScore W4132638C2779374083 @default.
- W4132638 hasConceptScore W4132638C2780598303 @default.
- W4132638 hasConceptScore W4132638C33923547 @default.
- W4132638 hasConceptScore W4132638C38652104 @default.
- W4132638 hasConceptScore W4132638C41008148 @default.
- W4132638 hasConceptScore W4132638C47446073 @default.
- W4132638 hasConceptScore W4132638C62520636 @default.
- W4132638 hasConceptScore W4132638C6557445 @default.
- W4132638 hasConceptScore W4132638C78519656 @default.
- W4132638 hasConceptScore W4132638C86803240 @default.
- W4132638 hasConceptScore W4132638C95518870 @default.
- W4132638 hasLocation W41326381 @default.
- W4132638 hasOpenAccess W4132638 @default.
- W4132638 hasPrimaryLocation W41326381 @default.
- W4132638 hasRelatedWork W119102315 @default.
- W4132638 hasRelatedWork W1601925689 @default.
- W4132638 hasRelatedWork W1967631556 @default.
- W4132638 hasRelatedWork W2007210815 @default.
- W4132638 hasRelatedWork W2015937588 @default.
- W4132638 hasRelatedWork W2019035133 @default.
- W4132638 hasRelatedWork W2026791908 @default.
- W4132638 hasRelatedWork W2028373146 @default.
- W4132638 hasRelatedWork W2035717358 @default.
- W4132638 hasRelatedWork W2046144827 @default.
- W4132638 hasRelatedWork W2066205917 @default.
- W4132638 hasRelatedWork W2167728154 @default.
- W4132638 hasRelatedWork W2183694626 @default.
- W4132638 hasRelatedWork W2268946005 @default.
- W4132638 hasRelatedWork W2553331318 @default.
- W4132638 hasRelatedWork W2576158771 @default.
- W4132638 hasRelatedWork W2604486315 @default.
- W4132638 hasRelatedWork W2787564929 @default.
- W4132638 hasRelatedWork W3012284974 @default.
- W4132638 hasRelatedWork W3186458297 @default.
- W4132638 isParatext "false" @default.