Matches in SemOpenAlex for { <https://semopenalex.org/work/W418173658> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W418173658 abstract "Can a machine learn how to segment different objects in real world images without having any prior knowledge about the delineation of the classes? In this paper, we demonstrate that this task is indeed possible. We address the problem by training a Convolutional Neural Networks (CNN) model with weakly labeled images, i.e., images in which the only knowledge assumed on each sample is the presence or not of an object. The model, trained in an one--vs-all scheme, learns representations that distinguish image patches that belong to the class of interest from those that belong to the background. The per-pixel segmentation is obtained by applying the model to the patch surrounding the pixel and assigning the inferred class to that pixel. Our system is trained using a subset of the Imagenet dataset. The experiments are validated on two challenging classes for segmentation: cats and dogs. We show both quantitatively and qualitatively that the model achieves good accuracy results for these classes on the Pascal VOC 2012 competition, without using any prior segmentation knowledge. This model is powerful in the sense that it learns how to segment objects without the use of costly fully-labeled segmentation datasets." @default.
- W418173658 created "2016-06-24" @default.
- W418173658 creator A5053381254 @default.
- W418173658 creator A5053915453 @default.
- W418173658 date "2014-01-01" @default.
- W418173658 modified "2023-09-27" @default.
- W418173658 title "Weakly Supervised Object Segmentation with 004 dwaeConvolutional Neural Networks" @default.
- W418173658 hasPublicationYear "2014" @default.
- W418173658 type Work @default.
- W418173658 sameAs 418173658 @default.
- W418173658 citedByCount "0" @default.
- W418173658 crossrefType "journal-article" @default.
- W418173658 hasAuthorship W418173658A5053381254 @default.
- W418173658 hasAuthorship W418173658A5053915453 @default.
- W418173658 hasConcept C124504099 @default.
- W418173658 hasConcept C153180895 @default.
- W418173658 hasConcept C154945302 @default.
- W418173658 hasConcept C160633673 @default.
- W418173658 hasConcept C199360897 @default.
- W418173658 hasConcept C2777212361 @default.
- W418173658 hasConcept C2781238097 @default.
- W418173658 hasConcept C31972630 @default.
- W418173658 hasConcept C41008148 @default.
- W418173658 hasConcept C50644808 @default.
- W418173658 hasConcept C75608658 @default.
- W418173658 hasConcept C81363708 @default.
- W418173658 hasConcept C89600930 @default.
- W418173658 hasConceptScore W418173658C124504099 @default.
- W418173658 hasConceptScore W418173658C153180895 @default.
- W418173658 hasConceptScore W418173658C154945302 @default.
- W418173658 hasConceptScore W418173658C160633673 @default.
- W418173658 hasConceptScore W418173658C199360897 @default.
- W418173658 hasConceptScore W418173658C2777212361 @default.
- W418173658 hasConceptScore W418173658C2781238097 @default.
- W418173658 hasConceptScore W418173658C31972630 @default.
- W418173658 hasConceptScore W418173658C41008148 @default.
- W418173658 hasConceptScore W418173658C50644808 @default.
- W418173658 hasConceptScore W418173658C75608658 @default.
- W418173658 hasConceptScore W418173658C81363708 @default.
- W418173658 hasConceptScore W418173658C89600930 @default.
- W418173658 hasLocation W4181736581 @default.
- W418173658 hasOpenAccess W418173658 @default.
- W418173658 hasPrimaryLocation W4181736581 @default.
- W418173658 hasRelatedWork W1901229278 @default.
- W418173658 hasRelatedWork W1961881037 @default.
- W418173658 hasRelatedWork W2513716658 @default.
- W418173658 hasRelatedWork W2738832561 @default.
- W418173658 hasRelatedWork W2739450375 @default.
- W418173658 hasRelatedWork W2752524377 @default.
- W418173658 hasRelatedWork W2788403636 @default.
- W418173658 hasRelatedWork W2901048985 @default.
- W418173658 hasRelatedWork W2951176974 @default.
- W418173658 hasRelatedWork W2952218918 @default.
- W418173658 hasRelatedWork W2955278847 @default.
- W418173658 hasRelatedWork W2956095941 @default.
- W418173658 hasRelatedWork W2963311325 @default.
- W418173658 hasRelatedWork W2963393555 @default.
- W418173658 hasRelatedWork W2980189057 @default.
- W418173658 hasRelatedWork W3010615378 @default.
- W418173658 hasRelatedWork W3104205547 @default.
- W418173658 hasRelatedWork W3140547576 @default.
- W418173658 hasRelatedWork W3172604323 @default.
- W418173658 hasRelatedWork W3201090325 @default.
- W418173658 isParatext "false" @default.
- W418173658 isRetracted "false" @default.
- W418173658 magId "418173658" @default.
- W418173658 workType "article" @default.