Matches in SemOpenAlex for { <https://semopenalex.org/work/W418857350> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W418857350 abstract "The study of boundary regularity for solutions of the system of Cauchy-Riemann equations •f =g on strictly pseudoconvex domains D has been a central theme in the theory of several complex variables for many years. Classically, two different approaches have been used : A) the abstract L2-theory of the O-Neumann problem (Kohn [12]), which leads to the study of the solution f perpendicular to ker~ with respect to some Hermitian metric, and B) the construction of rather explicit integral solution operators for c~, in analogy to the Cauchy transform in IF 1. The latter approach, first introduced by Grauert and Lieb [6] and by Henkin [9], has led to more refined estimates not directly available in the L 2 theory. As a consequence, there has been much interest in obtaining such estimates also for the abstractly defined canonical solution of 8f = g. In order to deal with this problem, E.M. Stein and his collaborators introduced the method of osculating the boundary of D by the Heisenberg group and using the precise analytic information available in this group setting. This was first carried out by Folland and Stein [-5] for the boundary Laplacian ff]b and the ~b-complex. Building upon these results, Greiner and Stein [7] then treated the 0-Neumann problem on D, obtaining a parametrix as a product of several operators whose symbols were known precisely. Although this parametrix allows to prove optimal estimates for the 0-Neumann operator N and the canonical solution operator ~*N for 0 in various norms, its representation is far from explicit. Moreover the 0-Neumann problem in [7] is defined with respect to a metric carefully adapted to the boundary a so-called Levi metric and hence the results have to be understood accordingly; in addition, they refer only to (0, 1) forms. Independently, Ovrelid [16] announced results for the O-Neumann operator N in a more general setting; this work, the details of which have not been published, also relies heavily on the symbol calculus for pseudodifferential Operators. More recently, Phong [17] has announced results for N based on the" @default.
- W418857350 created "2016-06-24" @default.
- W418857350 creator A5005190130 @default.
- W418857350 creator A5076062096 @default.
- W418857350 date "1983-01-01" @default.
- W418857350 modified "2023-09-26" @default.
- W418857350 title "On Integral Representations and a priori Lipschitz Estimates for the Canonical Solution of the ~-Equation*" @default.
- W418857350 cites W1519426808 @default.
- W418857350 cites W1976284538 @default.
- W418857350 cites W1981363727 @default.
- W418857350 cites W1988981462 @default.
- W418857350 cites W2028245587 @default.
- W418857350 cites W2049439117 @default.
- W418857350 cites W2061424759 @default.
- W418857350 cites W2321316054 @default.
- W418857350 cites W2332533383 @default.
- W418857350 cites W2333755201 @default.
- W418857350 cites W78616268 @default.
- W418857350 hasPublicationYear "1983" @default.
- W418857350 type Work @default.
- W418857350 sameAs 418857350 @default.
- W418857350 citedByCount "6" @default.
- W418857350 crossrefType "journal-article" @default.
- W418857350 hasAuthorship W418857350A5005190130 @default.
- W418857350 hasAuthorship W418857350A5076062096 @default.
- W418857350 hasConcept C104317684 @default.
- W418857350 hasConcept C134306372 @default.
- W418857350 hasConcept C158448853 @default.
- W418857350 hasConcept C17020691 @default.
- W418857350 hasConcept C185592680 @default.
- W418857350 hasConcept C191832335 @default.
- W418857350 hasConcept C202444582 @default.
- W418857350 hasConcept C22324862 @default.
- W418857350 hasConcept C33923547 @default.
- W418857350 hasConcept C43929395 @default.
- W418857350 hasConcept C55493867 @default.
- W418857350 hasConcept C86339819 @default.
- W418857350 hasConcept C9012821 @default.
- W418857350 hasConceptScore W418857350C104317684 @default.
- W418857350 hasConceptScore W418857350C134306372 @default.
- W418857350 hasConceptScore W418857350C158448853 @default.
- W418857350 hasConceptScore W418857350C17020691 @default.
- W418857350 hasConceptScore W418857350C185592680 @default.
- W418857350 hasConceptScore W418857350C191832335 @default.
- W418857350 hasConceptScore W418857350C202444582 @default.
- W418857350 hasConceptScore W418857350C22324862 @default.
- W418857350 hasConceptScore W418857350C33923547 @default.
- W418857350 hasConceptScore W418857350C43929395 @default.
- W418857350 hasConceptScore W418857350C55493867 @default.
- W418857350 hasConceptScore W418857350C86339819 @default.
- W418857350 hasConceptScore W418857350C9012821 @default.
- W418857350 hasLocation W4188573501 @default.
- W418857350 hasOpenAccess W418857350 @default.
- W418857350 hasPrimaryLocation W4188573501 @default.
- W418857350 hasRelatedWork W1553423533 @default.
- W418857350 hasRelatedWork W1694793654 @default.
- W418857350 hasRelatedWork W1877629541 @default.
- W418857350 hasRelatedWork W1966183015 @default.
- W418857350 hasRelatedWork W1988981462 @default.
- W418857350 hasRelatedWork W2028245587 @default.
- W418857350 hasRelatedWork W2055027612 @default.
- W418857350 hasRelatedWork W2137628800 @default.
- W418857350 hasRelatedWork W2331464710 @default.
- W418857350 hasRelatedWork W2553647917 @default.
- W418857350 hasRelatedWork W2571099415 @default.
- W418857350 hasRelatedWork W2805184541 @default.
- W418857350 hasRelatedWork W2963817809 @default.
- W418857350 hasRelatedWork W2963886478 @default.
- W418857350 hasRelatedWork W3009173745 @default.
- W418857350 hasRelatedWork W3023497931 @default.
- W418857350 hasRelatedWork W3043741235 @default.
- W418857350 hasRelatedWork W73365714 @default.
- W418857350 hasRelatedWork W91899504 @default.
- W418857350 hasRelatedWork W976804459 @default.
- W418857350 isParatext "false" @default.
- W418857350 isRetracted "false" @default.
- W418857350 magId "418857350" @default.
- W418857350 workType "article" @default.